K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

Xét ΔABC có

D là trung điểm của BC

N là trung điểm của AB

Do đó; DN là đường trung bình

=>DN//AC

23 tháng 5 2022

tk

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-co-duong-cao-ah-va-m-la-trung-diem-cua-ab-n-la-trung-diem-cua-ac-goi-d-la-diem-doi-xung-cua-h-qua-m-a-chung-minh-tu-gia.329501118371#:~:text=T%E1%BB%B1%20v%E1%BA%BD%20h%C3%ACnh,r%E1%BB%93i%20T.T

16 tháng 12 2022

a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có

AO chung

AM=AN

Do đó: ΔAMO=ΔANO

=>góc MAO=góc NAO

=>AO là phân giác của góc MAN

b: OB=OA

OA=OC

Do đó: OB=OC

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

17 tháng 12 2022

Câu a là cm AD mà với câu b cm tam giác cân lquan j

 

13 tháng 6 2019

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

18 tháng 3 2021

Giúp mình với, mình cảm ơn!😢

18 tháng 3 2021

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

 

a: Xét ΔABC có

AD,BE là đường cao

AD cắt EB tại H

=>H là trực tâm

=>CH vuông góc AB

b: ΔABC cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

Xét tứ giác AKBD có

góc AKB=góc ADB=góc KBD=90 độ

=>AKBD là hình chữ nhật

=>góc KAD=90 độ

25 tháng 10 2021

undefinedundefined

đây là đáp án bạn nhé

26 tháng 10 2021

undefined

ảnh kia của mình nó bị thiếu nhé

16 tháng 11 2021

Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay MNCB là hthang

Mà \(\widehat{B}=\widehat{C}\) nên MNCB là htc

MN là đtb cm trên rồi

16 tháng 11 2021

dis ik~~

a/ Vì AB = AC (gt) mà D, E lần lượt là t/điểm của AB, AC

=> AD = AE = BD = CE

Xét ΔABEvàΔACDΔABEvàΔACD có:

AB = AC (gt)

ˆA:chungA^:chung

AE = AD (cmt)

⇒ΔABE=ΔACD(c−g−c)(đpcm)⇒ΔABE=ΔACD(c−g−c)(đpcm)

b/ Vì ΔABE=ΔACD(ýa)ΔABE=ΔACD(ýa)

⇒BE=CD⇒BE=CD (c t/ứng)(đpcm)

c/ Xét ΔBDCvàΔCEBΔBDCvàΔCEB có:

BC: chung

BD = CE (đã cm)

CD = BE (ý b)

=> ΔBDC=ΔCEB(c−c−c)ΔBDC=ΔCEB(c−c−c)

⇒ˆBDC=ˆCEB⇒BDC^=CEB^ (g t/ứng)

Xét ΔBDKΔBDK và ΔΔCEK có:

ˆBDCBDC^ = ˆCEBCEB^ (cmt)

BD = CE (đã cm)

ˆB1=ˆC1B1^=C1^ (g t/ứngs do ΔΔABE = ΔΔACD)

=> ΔΔBDK = ΔΔCEK (g−c−gg−c−g)

=> BK = CK (c t/ứng)

=> ΔΔKBC cân tại K (đpcm)

d/ Xét ΔABKΔABK và ΔΔACK có:

AK: chung

AB = AC (gt)

BK = CK (đã cm)

=> ΔΔABK = ΔΔACK (c−c−cc−c−c)

=> ˆBAKBAK^ = ˆCAKCAK^ (g t/ứng)

=> AK là tia p/g của goác BAC (đpcm)