\(Cho\) \(\frac{a}{c}=\frac{c}{b}\) .Chứng minh rằng: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\ge0.\)
\(a^2\left(\frac{a-}{b+c}\frac{b}{a+c}\right)+b^2\left(\frac{b}{a+c}\frac{-c}{a+b}\right)+c^2\left(\frac{c-}{a+b}\frac{a}{b+c}\right)\ge0.\)
\(a^2\left(a^2-b^2\right)+b^2\left(b^2-c^2\right)+c^2\left(c^2-a^2\right)\ge0.\)
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2.\) cái này dễ rồi .
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)
áp dụng dbt cosi cho 2 số:\(\frac{a^3}{b^2}\)va b ta duoc :
\(\frac{a^3}{b^2}\)+a\(\ge\)2\(\sqrt{\frac{a^3}{b^2}.a}\)=2\(\frac{a^2}{b}\)
CMTT:\(\frac{b^3}{c^2}\)+b\(\ge\)2\(\frac{b^2}{c}\)
\(\frac{c^3}{a^2}\)+c\(\ge\)2\(\frac{c^2}{a}\)
\(\Rightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)+(a+b+c)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\))
\(\Leftrightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)) - (a+b+c) (1)
Ap dụng bdt cosi cho các số dương , ta được:
\(\frac{a^2}{b}\)+\(b\)\(\ge\)2\(\sqrt{\frac{a^2}{b}.b}\)=2a
CMTT: \(\frac{b^2}{c}\)+c\(\ge\)2b
\(\frac{c^2}{a}\)+a\(\ge\)2c
\(\Rightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)+(a+b+c) \(\ge\)2(a+b+c)
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)\(\ge\)a+b+c
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) _ (a + b + c ) \(\ge\)0
Do Đó:TỪ (1) ta co : \(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{b^3}{c^2}\)\(\ge\)(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) )
Xét hiệu hai vế:
BĐT \(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left(a+b+c-b-c-a\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}\left(a-b\right)-\left(a-b\right)\right)+\left(\frac{b^2}{c^2}\left(b-c\right)-\left(b-c\right)\right)+\left(\frac{c^2}{a^2}\left(c-a\right)-\left(c-a\right)\right)\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a-b\right)^2}{b^2}+\frac{\left(b+c\right)\left(b-c\right)^2}{c^2}+\frac{\left(c+a\right)\left(c-a\right)^2}{a^2}\ge0\)
BĐT này đúng với mọi a,b,c > 0 nên ta có Q.E.D
Dấu "=" xảy ra khi a =b =c
P/s: Toán 7 gì mà khó thế nhỉ??Mình cũng không chắc đâu nha!
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Tương tự: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế:
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{a+b+c}{2}+a+b+c\)
\(\Leftrightarrow a\left(\frac{a}{b+c}+1\right)+b\left(\frac{b}{a+c}+1\right)+c\left(\frac{c}{a+b}+1\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a\left(\frac{a+b+c}{b+c}\right)+b\left(\frac{a+b+c}{c+a}\right)+c\left(\frac{a+b+c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\frac{a}{b+c}+\left(a+b+c\right)\frac{b}{c+a}+\left(a+b+c\right)\frac{c}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+3\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}b+c+c+a+a+b\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{matrix}\right.\)
Nhân từng vế :
\(\Rightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right).\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\)
\(\Rightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\left(đpcm\right)\)
Vậy với a ,b ,c > 0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Áp dụng bất đẳng thức cô-si cho các số thực không âm ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}\times\frac{b+c}{4}}=a\) (1)
\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+c}\times\frac{a+c}{4}}=b\) (2)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}\times\frac{a+b}{4}}=c\) (3)
Cộng (1),(2) và (3),vế theo vế ta được:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi :a=b=c
Vậy \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\) với a,b,c >0
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
+ Ta có \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\) Thay vào biểu thức \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
Ta lấy a mũ 2 + c mũ 2 trên b mũ 2 + c mũ 2 -> có 2 c mũ 2 ta bỏ-> nếu a mũ 2 , b mũ 2 là 1 thì ko phái là a/b ak