K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

2 + 2 chắc chắn sẽ bằng 5

30 tháng 7 2020

A B C D F E P Q M

Cho cái hình, ch bt lm nha

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

a) Ta có: ΔFBC vuông tại F(gt)

mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(FM=\dfrac{BC}{2}\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(EM=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra ME=MF

hay M nằm trên đường trung trực của EF(đpcm)

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)

Sửa đề: M đối xứng H qua BC

Gọi AD là đường kính, I là giao của HD và BC

góc ABD=1/2*sđ cung AD=90 độ

=>BD//CH

góc ACD=1/2*sđ cung AD=90 độ

=>CD//BH

mà BD//CH

nên BHCD là hình bình hành

=>BC căt HD tại trung điểm của mỗi đường

=>I là trung điểm chung của HD và BC và BH//CD

góc AMD=1/2*sđ cung AD=90 độ

=>MD vuông góc AM

=>MD//BC

=>BCDM là hình thang cân

=>góc MBC=góc DCB=góc HBC

=>BC là phân giác của góc HBM

mà BC là trung tuyến của ΔHBM

nên ΔHMB cân tại B

=>BC là trug trực của MH

=>M đối xứng H qua BC