Cho \(\hept{\begin{cases}a,b\in N\\a< b\end{cases}}.\)Tìm tổng tất cả các phân số có mẫu bằng 7, mỗi phân số lớn hơn \(a\)nhưng nhỏ hơn \(b?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là: (1254 + 150) : 2 = 702
b là: 702 + 150 = 852
Vậy phân số \(\frac{a}{b}\)là \(\frac{702}{802}\)
Đáp số: \(\frac{702}{802}\)
a là[1254+150]:2=702
b là:702+150=852
vậy từ đề bài ta có là:702/852
k mik nha xin bn đấy mik hua k lại bye
a) Gọi phân số cần tìm có dạng là \(\dfrac{a}{12}\)
Theo đề, ta có: \(\dfrac{-2}{3}< \dfrac{a}{12}< \dfrac{-1}{4}\)
\(\Leftrightarrow\dfrac{-8}{12}< \dfrac{a}{12}< \dfrac{-3}{12}\)
\(\Leftrightarrow-8< a< -3\)
\(\Leftrightarrow a\in\left\{-7;-6;-5;-4\right\}\)
Vậy: Các phân số cần tìm là \(\dfrac{-7}{12};\dfrac{-6}{12};\dfrac{-5}{12};\dfrac{-4}{12}\)
b) Gọi phân số cần tìm có dạng là \(\dfrac{15}{a}\left(a\ne0\right)\)
Theo đề, ta có: \(\dfrac{3}{7}< \dfrac{15}{a}< \dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{15}{35}< \dfrac{15}{a}< \dfrac{15}{24}\)
Vậy: Các phân số cần tìm là \(\dfrac{15}{34};\dfrac{15}{33};...;\dfrac{15}{25}\)
10:
n lẻ nên n=2k-1
=>A=1+3+5+7+...+2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là:
\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)
1/
a3+b3+c3=2abc
vì a+b+c=0
=> a+b=-c
GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0
khi đó. A=2.(-1).1.0=0
=> GTNN của A là......
\(a)\)
Gọi phân số có mẫu số là \(x\), ta có:
\(\frac{3}{7}< \frac{15}{x}< \frac{5}{8}\)
\(\Rightarrow\frac{15}{35}< \frac{15}{x}< \frac{15}{24}\)
\(\Rightarrow24< x< 35\)
\(\Rightarrow x\in\left\{25;26;27;28;29;30;31;32;33;34\right\}\)
Vậy ...
\(b)\)
Gọi phân số có tử số là \(x\), ta có:
\(-\frac{2}{3}< \frac{x}{12}< -\frac{1}{4}\)
\(\Rightarrow\frac{-8}{12}< \frac{x}{12}< \frac{-3}{12}\)
\(\Rightarrow-8< x< -3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4\right\}\)
Vậy ...
Gọi số thỏa đề bài là \(\frac{x}{7}\)ta có
a < \(\frac{x}{7}\)< b \(\Leftrightarrow7a< x< 7b\)
Vây x \(\in\)(7a + 1 đến 7b - 1)
Tổng các số đó là
\(\frac{7a+1}{7}+\frac{7a+2}{7}+...+\frac{7b-1}{7}\)
\(=\frac{1}{7}\left(7a+1+...+7b-1\right)\)
\(=\frac{1}{7}\times\frac{\left(7b-7a-1\right)\left(7a+7b\right)}{2}\)
Bạn làm tiếp nhé