K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(1\le y\le x\le30\Rightarrow x+y\)nguyên dương.

Để \(\frac{x+y}{x-y}\)đạt giá trị lớn nhất thì \(x-y\)là số nguyên dương nhỏ nhất và \(x+y\)đạt giá trị lớn nhất .

\(\Rightarrow x-y=1\)

\(x+y\)đạt giá trị lớn nhất thì \(x\)lớn nhất và \(y\)lớn nhất

\(\Rightarrow x=30;y=29\)

\(\Rightarrow\frac{x+y}{x-y}=\frac{59}{1}=59\)

Vậy...

7 tháng 8 2016

Lớp 6 khó thế

15 tháng 9 2016

\(1\le y\le x\le30\Rightarrow x+y\) nguyên dương .

Để \(\frac{x+y}{x-y}\) đạt GTLN thì \(x-y\) là số nguyên dương nhỏ nhất và \(x+y\) đạt GTLN .

\(\Rightarrow x-y=1\)

\(x+y\) đạt GTLN thì x lớn nhất và y nhỏ nhất .

\(\Rightarrow x=30;y=29\)

\(\Rightarrow\frac{x+y}{x-y}=\frac{59}{1}=59\)

 

2 tháng 5 2018

sai đề bạn ơi

(x-3)2012+(3y-12)2014<(=)0

(x-3)2012;(3y-12)2014>(=)0

mà (x-3)2012+(3y-12)2014<(=)0

=>(x-3)2012=(3y-12)2014=0

=>x-3=3y-12=0

=>x=3;y=4

Vậy x=3;y=4

9 tháng 11 2016

a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)

Bình phương 2 vế của (1) ta được:

\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)

Dấu = khi \(xy\ge0\)

b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)

Áp dụng câu a ta có:

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)

Suy ra đpcm