cmr
|x+y|< hoac = |x|+|y|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\le y\le x\le30\Rightarrow x+y\)nguyên dương.
Để \(\frac{x+y}{x-y}\)đạt giá trị lớn nhất thì \(x-y\)là số nguyên dương nhỏ nhất và \(x+y\)đạt giá trị lớn nhất .
\(\Rightarrow x-y=1\)
\(x+y\)đạt giá trị lớn nhất thì \(x\)lớn nhất và \(y\)lớn nhất
\(\Rightarrow x=30;y=29\)
\(\Rightarrow\frac{x+y}{x-y}=\frac{59}{1}=59\)
Vậy...
\(1\le y\le x\le30\Rightarrow x+y\) nguyên dương .
Để \(\frac{x+y}{x-y}\) đạt GTLN thì \(x-y\) là số nguyên dương nhỏ nhất và \(x+y\) đạt GTLN .
\(\Rightarrow x-y=1\)
\(x+y\) đạt GTLN thì x lớn nhất và y nhỏ nhất .
\(\Rightarrow x=30;y=29\)
\(\Rightarrow\frac{x+y}{x-y}=\frac{59}{1}=59\)
(x-3)2012+(3y-12)2014<(=)0
(x-3)2012;(3y-12)2014>(=)0
mà (x-3)2012+(3y-12)2014<(=)0
=>(x-3)2012=(3y-12)2014=0
=>x-3=3y-12=0
=>x=3;y=4
Vậy x=3;y=4
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)
Bình phương 2 vế của (1) ta được:
\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)
Dấu = khi \(xy\ge0\)
b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)
Áp dụng câu a ta có:
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)
Suy ra đpcm