Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD = AB .
a. Cho biết AB = 6cm và BC = 10cm. Tính AC và so sánh góc B và góc C.
b. Chứng minh tam giác BCD cân.
c. Gọi M là trung điểm CD. BM cắt CA tại G. Tính AG, BG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét △ABC vuông tại A có :
BC2=AB2+AC2(định lý py-ta-go)
⇒102=62+AC2
⇒100=36+AC2
⇒AC2=100-36=64
⇒AC=8cm
Xét △ABC có AC>AB(8>6)
⇒∠B>∠C(quan hệ giữa góc và cạnh đối diện)
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2=100-36\)
=> \(AC^2=64\)cm => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>t.giác BCD cân tại C (đpcm)
c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M
=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)
=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm
vậy MC\(\approx\)5,3 cm
a: AC=căn 15^2-9^2=12cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
c: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>CM=2/3CA=8cm
a, Ta có : ∆ ABC vuông tại A ( gt)
-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )
-> AC^2 = BC^2 - AB^2
Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt)
Nên AC^2 = 10^2 - 6^2
-> AC^2 = 100- 36
-> AC^2 = 64
-> AC = 8 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
a, áp dụng định lí py-ta-go ta có:
BC2 =AB2+AC2
=> AC2=BC2−AB2
=> AC2=100−36
=> AC2=64 => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=>\(\widehat{A}\) > \(\widehat{B}\)>\(\widehat{C}\) (góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> ΔBCA=ΔDCA(cạnh huyền -cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>\(\Delta\)BCD cân tại C (đpcm)
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
a: AC=8cm
Xét ΔBAC có AB<AC
nên \(\widehat{B}>\widehat{C}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCDB có
CA là đường trung tuyến
BM là đường trung tuyến
CA cắt BM tại G
Do đó: G là trọng tâm
=>AG=1/3AC=8/3(cm)