Phân tích đa thức thành nhân tử\(x^4-y^4\)
Ghi kết quả thui nhan mấy bạn ai nhanh mk k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x\left(\frac{x^2}{4}+x+1\right)=x\left(\frac{x}{2}+1\right)^2\)
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^2\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)\)
\(=\left(x-z\right)\left(x-y\right)\left(-3y+3z\right)\)
\(=-3\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
a) \(x^4+5x^3+10x-4\)
\(=\left(x^4+2x^2\right)+\left(5x^3+10x\right)-\left(2x^2+4\right)\)
\(=x^2\left(x^2+2\right)+5x\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)
\(=\left(x^2+2\right)\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-2\right)\)
\(=\left(x^2+2\right)\left[\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\right]\)
\(=\left(x^2+2\right)\left[\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2\right]\)
\(=\left(x^2+2\right)\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x^2+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
b) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-zx-zy+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-zx-zy\right)\)
=(x-y)(x3+x2y+xy2+y3)
mik nha chế