Cho A= 3x-5- |x-4|
a)Rút gọn A khi x>4
b) tìm x nếu a= 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b: Để P=2 thì \(3\sqrt{x}=2\sqrt{x}+4\)
hay x=16
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
a: \(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)
ĐKXĐ: x>=0
\(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)
Thay x=4 vào A, ta được:
\(A=\dfrac{4-2+1}{2+1}=\dfrac{5-2}{3}=1\)
b: M=A*B
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{2x+6\sqrt{x}+7-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)^2}=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)
Để M>2 thì M-2>0
=>\(\dfrac{\sqrt{x}+6-2\sqrt{x}-2}{\sqrt{x}+1}>0\)
=>\(-\sqrt{x}+4>0\)
=>\(-\sqrt{x}>-4\)
=>\(\sqrt{x}< 4\)
=>0<=x<16
c: Để M là số nguyên thì \(\sqrt{x}+6⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1+5⋮\sqrt{x}+1\)
=>\(5⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;-1;5;-5\right\}\)
=>\(\sqrt{x}\in\left\{0;-2;4;-6\right\}\)
=>\(\sqrt{x}\in\left\{0;4\right\}\)
=>\(x\in\left\{0;16\right\}\)
a: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{-x+\sqrt{x}+2}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)
\(=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)+\sqrt{x}\)
\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}+\sqrt{x}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}+\sqrt{x}\)
\(=-\sqrt{x}-1+\sqrt{x}\)
=-1
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
a: Khi x>4 thì A+3x-5-x+4=2x-1
b: A=2016
=>3x-5-|x-4|=2016(1)
Trường hợp x>=4
=>2x-1=2016
hay x=2017/2(nhận)
Trường hợp 2: x<4
=>3x-5-(4-x)=2016
=>3x-5-4+x=2016
=>4x-9=2016
hay x=2025/4(loại)
a. Khi x > 4
\(A=3x-5-x-4\)
\(=2x-9\)
b. Ta có A = 2016
\(\Rightarrow3x-5-\left|x-4\right|=2016\)
\(\Leftrightarrow-\left|x-4\right|=2016-3x+5\)
\(\Leftrightarrow\left|x-4\right|=3x-2021\)
TH1: \(\left|x-4\right|\ge0\) khi \(x\ge4\)
\(x-4=3x-2021\)
\(\Leftrightarrow-2x=-2017\Leftrightarrow x=\dfrac{2017}{2}\left(tmđk\right)\)
TH2 : \(\left|x-4\right|< 0\) khi \(x< 4\)
\(x-4=2021-3x\)
\(\Leftrightarrow4x=2025\Leftrightarrow x=\dfrac{2025}{4}\left(ktmđk\right)\)
Vậy : Phương trình có tập nghiệm \(S=\left\{\dfrac{2017}{2}\right\}\)