K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2017

Lời giải:

Ta có:

\(A=\frac{(2^3+1)(3^3+1)(4^3+1)...(100^3+1)}{(2^3-1)(3^3-1).....(100^3-1)}\)

\(=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1).....(100+1)(100^2-100+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(100-1)(100^2+100+1)}\)

\(=\frac{3.4...101(2^2-2+1)(3^2-3+1)...(100^2-100+1)}{1.2.3..99(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

\(=\frac{100.101}{2}.\frac{(2^2-2+1)(3^2-3+1)....(100^2-100+1)}{(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

Xét: \(a^2+a+1=(a+1)^2-a=(a+1)^2-(a+1)+1\)

Do đó:

\(\left\{\begin{matrix} 2^2+2+1=3^2-3+1\\ 3^2+3+1=4^2-4+1\\ ....\\ 99^2+99+1=100^2-100+1\\ \end{matrix}\right.\)

\(\Rightarrow A=\frac{100.101}{2}.\frac{2^2-2+1}{100^2+100+1}=5050.\frac{3}{10101}\)

\(A< 5050.\frac{3}{10100}=\frac{5050}{10100}.3=\frac{3}{2}\)

Vậy \(A< \frac{3}{2}\) hay \(A< B\)

10 tháng 12 2019

Cái chỗ so sánh a với tích kia là \(\frac{3}{10101}\) chứ ko phải là\(\frac{3}{10100}\) nhé

2 tháng 4 2023

1+1=3 :)))

a: Vì 0,2<1

nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R

mà -3<-2

nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)

b: Vì \(0< \dfrac{1}{3}< 1\)

nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R

mà \(2000< 2004\)

nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)

c: Vì 3,2>1

nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R

mà \(1,5< 1,6\)

nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)

d: Vì \(0< 0,5< 1\)

nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R

mà -2021>-2023

nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)