Mong các bạn giúp mình
Tìm stn nhỏ nhất sao cho chia nó cho 17 dư 5 , chia 19 dư 12
Mình đang rất cần mong các bạn cố gắng giải hộ mình !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
Gọi a là số tự nhiên cần tìm. ( a thuộc N sao)
a : 11 dư 6 => a+5 chia hết cho 11
a : 17 dư 12 => a+5 chia hết cho 17
a : 29 dư 24 => a+5 chia hết cho 29
=> a+5 thuộc BC(11,17,29) mà a nhỏ nhất => a+5 là BCNN(11,17,29)
Từ đây chắc bn tự làm nốt nha!
Gọi số cần tìm là A . Theo bài ra ta có :
\(A=4q_1\)\(+3\)
\(A=17q_2\)\(+9\)
\(A=19q_3\)\(+13\left(q_1,q_2,q_3\in N\right)\)
\(\rightarrow A+25=4\left(q_1+7\right)=17I\left(q_2+2\right)=19\left(q_3+2\right)\)
\(\rightarrow A+25\)chia hết cho 4 ; 17 ; 19 mà ( 4 ; 17 ; 19 ) = 1 ( A + 25 ) chia hết cho tích ( 4 . 17 . 19 ) hay A + 25 = 1292k ( K thuộc N )
\(\rightarrow\)A = 1292k - 25 = 1292k - 1292k + 1267 = 1292 ( k - 1 ) + 1267
Vậy khi chia A cho 1292 thì dư 1267.
gọi A là số cần tìm ta có:
A = 4q1+3
A = 17q2+9
A = 19q3+13 (q1, q2, q3 ∈ N)
→ A + 25 = 4 (q1 + 7) = 17I (q2 + 2)
= 19 (q3 + 2)
⇒ A+ 25 chia hết cho 4;17;19 mà (4;17;19) =1(A+25) chia hết cho tích(4;17;19) hay A+25=1292K(k thuộc N)
⇒ A=1292K-25=1292k-1292K+1267= 1292(K-1)+1267
vậy khi chia A cho 1292 thì dư 1267
a, 10^n luôn có tổng các chữ số là 1 vì 10 ^n = 10..;1 + 0 + 0 + .... + 1 =1
mà 5^3 =125 , vì các số chia hết cho 9 đều có tổng các chữ số của số đó chia hết cho 9 , mà ; 1 + 2 + 5 +1 =9 MÀ 9 chia hết chia 9 nên 10^n + 5^3 chia hết cho 9
b,ta có : 43 ^43 > 17^17 ; 43 . 43 = ...9 ( có tận cùng là 9 )
17.17 = ...9 ( có tận cùng là 9 )
Vì những số chia hết cho 10 có tận cùng là 0 mà : (...9) - (...9) = (...0) ( có tận cùng là 0 )
Nên 43^43 - 17^17 chia hết cho 10