rút gọn \(\dfrac{2x+\sqrt{2}}{4x^2+4\sqrt{2}x+\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2}{x-1}\sqrt{\dfrac{\left(x-1\right)^2}{4x^2}}=\dfrac{2}{x-1}\left|\dfrac{x-1}{2x}\right|=\dfrac{\left|x-1\right|}{\left(x-1\right)\left|x\right|}\)
\(B=\left(x^2-4\right)\sqrt{\dfrac{9}{x^2-4x+4}}=\dfrac{3\left(x^2-4\right)}{\left|x-2\right|}\)
a) Ta có: \(A=\dfrac{2}{x-1}\cdot\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(=\dfrac{2}{x-1}\cdot\dfrac{x-1}{2x}\)
\(=\dfrac{1}{x}\)
b) Ta có: \(\left(x^2-4\right)\cdot\sqrt{\dfrac{9}{x^2-4x+4}}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)\cdot3}{\left(x-2\right)^2}\)
\(=\dfrac{3x+6}{x-2}\)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)
\(A=\left(\dfrac{4x+4}{2\sqrt{2x^3}-8}-\dfrac{\sqrt{2x}}{2x+2\sqrt{2x}+4}\right)\)\(\left(\dfrac{1+2\sqrt{2x^3}}{1+\sqrt{2x}}\right)\)
\(=\left[\dfrac{4x+4-\sqrt{2x}\left(\sqrt{2x}-2\right)}{\left(\sqrt{2x}-2\right)\left(2x+2\sqrt{2x}+4\right)}\right]\)\(.\dfrac{\left(1+\sqrt{2x}\right)\left(2x-2\sqrt{2x}+4\right)}{1+\sqrt{2x}}\)
Làm tiếp nhé :>>
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Sửa đề: x-4
\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)
\(A=\dfrac{2x+4}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}\)
\(=\dfrac{2x+4}{\sqrt{x^3}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2x+4}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x+4+x+\sqrt{x}-2-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
#Toru
A=\(\dfrac{2x+4}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}=\dfrac{2x+4+\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{2x+4+x+\sqrt{x}-2-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
`[2x+\sqrt{2}]/[4x^2+4\sqrt{2}x+\sqrt{2}]`
`=[\sqrt{2}(\sqrt{2}x+1)]/[\sqrt{2}(2\sqrt{2}x^2+4x+1)]`
`=[\sqrt{2}x+1]/[2\sqrt{2}x^2+4x+1]`
\(\dfrac{2x+\sqrt{2}}{4x^{2^{ }}4\sqrt{2}x^{2^{ }}+\sqrt{2}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{2}x+1\right)}{\sqrt{2}\left(2\sqrt{2}x^2+4x+1\right)}\)
= \(\dfrac{\sqrt{2}x+1}{2\sqrt{2}x^24x+1}\)