Cho \(a,b>0\) và \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
Chứng minh Rằng: \(\frac{a+b}{ab}=\frac{a^2+b^2}{a^2b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\)
Mà \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
Khi đó:
\(a^{102}+b^{102}=\left(a^{102}+b^{102}\right)\left(a+b-ab\right)\)
\(\Rightarrow a+b-ab=1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Rightarrow a=1;b=1\)
\(\Rightarrow a^{2010}+b^{2010}=2\)
mình mới học lớp 5
tk nhé@@@@@@@@@@@@@@@@
hihi
LOL
Liên MIh hay s mà LOL?