Cho p và 8p-1 là SNT.CMR 8p+1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với p=3
=>8p‐1=23 ﴾thỏa mãn﴿
8p+1=25 là hợp số =>﴾loại﴿
Với p khác 3
=>p không chia hết cho 3
=>8p không chia hết cho 3
mà ﴾8p‐1﴿p﴾8p+1﴿là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p‐1 >3 ﴾p thuộc N﴿
=>8p‐1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số ﴾ĐPCM﴿
với p=3 suy ra p-1=23
8p+1=25(loại)
với p khác 3 suy ra p không chia hết cho3 suy ra 8p không chia hết cho3 mà (8p-1)p(8p+1) là tích của 3 số TN liên tiếp
Theo bài ra 8p-1>3(p thuộc N) suy ra 8p-1 ko chia hết cho 3
suy ra 8p+1 chia hết cho 3 mà 8p+1>3
suy ra 8p+1 là hợp số
Vì P nguyên tố ⇒ P có dạng 3k; 3k + 1 hoặc 3k + 2 ( k ϵ N* )
Vì P nguyên tố, P = 3k ⇒ P = 3
Nếu P = 3 ⇒ 8P - 1 = 8 . 3 - 1 = 24 ( loại )
Nếu P = 3k + 2 ⇒ 8P - 1 = 8( 3k + 2 ) - 1 = 24k + 16 - 1 = 24k + 15 = 3( 8k + 5 ) ⋮ 3
Mà 3( 8k + 5 ) > 3 . Vậy 8P - 1 hợp số ( loại )
Vậy P = 3k + 1 ⇒ 8P + 1 = 8( 3k + 1 ) + 1 = 24k + 8 + 1 = 24k + 9 = 3( 8k + 3 ) ⋮ 3
Mà 3( 8k + 3 ) > 3 nên 8P + 1 là hợp số
- Với \(p=3\Rightarrow\) \(8p+1=25\) là hợp số
- Với \(p>3\) \(\Rightarrow p⋮̸3\Rightarrow\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)
+ Với \(p=3k+2\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)⋮3\) không phải là số nguyên tố (không phù hợp giả thiết \(\Rightarrow\) loại)
+ Với \(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=3\left(8k+3\right)⋮3\) là hợp số
Vậy \(8p+1\) luôn là hợp số