Cho các số dương thỏa mãn ab+1,352(a+b)=3,491
Tính gần đúng GTNN của BT: P=a3+b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
\(a^2+b^2=a^3+b^3=a^4+b^4\)
\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)
\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^2+b^2=a^3+b^3\)
\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)
\(\Rightarrow a+b=2\)
a+b+c=1; a>0; b>0; c>0
=>a>=b>=c>=0
=>a(a-c)>=b(b-c)>=0
=>a(a-b)(a-c)>=b(a-b)(b-c)
=>a(a-b)(a-c)+b(b-a)(b-c)>=0
mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0
nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0
=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a
=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)
=>a^3+b^3+c^3+6abc>=(ab+bc+ac)
mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)
Mk ms tìm được GTNN thôi!
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:
a2 + b2 \(\ge\) 2ab
\(\Leftrightarrow\) 1 \(\ge\) 2ab
\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0
\(\Leftrightarrow\) 1 - ab \(\ge\) ab
\(\Rightarrow\) A \(\ge\) ab(a + b)
Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)
\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)
Vậy ...
Chúc bn học tốt!
\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)
\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)
Cộng vế:
\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)
\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)
\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)
Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).
Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).
Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).
Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).
Vậy abc chia hết cho 14.
P = a3 + b3 >= 3\(\sqrt[3]{a^3.b^3}\) ( Cosy)
Dấu "=" xảy ra <=> a = b
Thay a=b vào ab + 1.352 ( a+b) = 3.491
=> a2 + 2.704 a - 3.491 = 0
Giải hệ phương trình bậc 2 trên máy ta được a = 0.9542749186 ( Nhận ) hoặc a = -3.658274919 ( Loại )
Thay a = 0.9542749186 vào a3 + b3 thì P = 2.a3 = 1.738003007
Mình chắc bạn đang học toán máy tính nên mình giải thê nhé
thì ra là áp dụng BĐT,có thế mk cũng ko nghĩ ra