Cho tam giác ABC,trực tâm H,M là trung điểm của BC,gọi D là điểối xứng với H qua M.
a)Tính góc ABD,góc ACD
b)Gọi I là trung điểm của AD.Chứng minh rằng:I là giao điểm các đường trung trực DAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
Suy ra: BH//CD; BD//CH
=>AB⊥BD; AC⊥CD
=>\(\widehat{ABD}=\widehat{ACD}=90^0\)
b: Ta có: ΔABD vuông tại B
nên ΔABD nội tiếp đường tròn đường kính AD
hay I là giao điểm của các đường trung trực của ΔDAB
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành