Tìm số tự nhiên n để 6n+9 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+9 chia hết cho n-2
n+9= (n-2)+11
Để n+9 chia hết cho n-2 thì 11 chia hết cho n-2
n-2 thuộc Ư(11)={1,11}
n-2=1 => n=1+2 => n=3
n-2=11=> n=11+2=> n=13
b) 2n+5 chia hết cho n+2
2n+5=2(n+2)+1
để 2n+5 chia hết cho n+2 thì 1: n+2
=> n+2 thuộc Ư(1)={1}
n+2=1 => n=1-2 => n=-1
c) 6n-16 chia hết cho 2n+1
6n-16=3(2n+1)-19
để 6n-16 chia hết cho 2n+1 thì 19 chia hết cho 2n+1
=> 2n+1 thuộc Ư(19)={19}
=> 2n+1=1 => 2n=1+1 => 2n=2 => n=2:2 => n=1
tương tự như vậy bn tự giải số còn lại nha
a)\(n+9=n-2+11\)chia hết cho n-2
mà n-2 chia hết cho n-2 => 11 chia hết cho n-2
=>\(n-2\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n\in\left\{-9;1;3;13\right\}\)
b)\(2n+5=\left(2n+4\right)+1=2\left(n+2\right)+1\) chia hết cho n+2
mà 2(n+2) chia hết cho n+2 => 1 chia hết cho n+2
=>\(n+2\in\left\{-1;1\right\}\)
=>\(n\in\left\{-3;-1\right\}\)
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a/ 5n+2\(⋮\)9-2n
<=> 2(5n+2)\(⋮\)9-2n
<=> 10n+4\(⋮\)9-2n
<=> 10n-45+49\(⋮\)9-2n
<=> 49-(45-10n)\(⋮\)9-2n
<=> 49-5(9-2n)\(⋮\)9-2n
<=> 49\(⋮\)9-2n => 9-2n=(-49,-7,-1,1,7,49)
9-2n | -49 | -7 | -1 | 1 | 7 | 49 |
n | 29 | 8 | 5 | 4 | 1 | -20 (loại) |
ĐS: n=(1,4,5,8,29)
b/ Làm tương tự
a,5n+2 chia hết cho 9-2n
=>2(5n+2)+5(9-2n) chia hết cho 9-2n
=>10n+4+45-10n chia hết cho 9-2n
=>49 chia hết cho 9-2n
=>9-2n E Ư(49)={1;-1;7;-7;49;-49}
=>2n E {8;10;2;-16;-40;58}
=>n E {4;5;1;-8;-20;29}
Mà n là stn
=>n E {4;5;1;29}
b, 6n+9 chia hết cho 4n-1
=>2(6n+9)-3(4n-1) chia hết cho 4n-1
=>12n+18-12n+3 chia hết cho 4n-1
=>21 chia hết cho 4n-1
=>4n-1 E Ư(21)={1;-1;3;-3;7;-7;21;-21}
=>4n E {2;0;4;-2;8;-6;22;-20}
=>n E {1/2;0;1;-1/2;2;-3/2;11/2;-5}
Mà n là stn
=> n E {0;1}
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
a) n+21 chia hết cho n
=> 21 chia hết cho n
=> n\(\in\)U(21) ={ 1;3;7;21} ( n là số tự nhiên )
b) 18-2n chia hết cho n
=> 2.(9-n) chia hết cho n
=> 9-n chia hết cho n
=> 9 chia hết cho n
=> n= 1;3;9
c) bạn tìm trong câu hỏi tương tự nhé
6n+9 chia hết cho 2n-1
ta thấy:
6n+9=(2n-1)x3+12
=>(2n-1)x3 + 12 chia hết cho 2n-1
=>(2n-1)x3 chia hết cho 2n-1
=>12 chia hết cho 2n-1
mã 12 chia hết cho:1;2;3;4;6;12
vậy n=1;2
a, 2n+72n+7⋮n+1
2(n+1)+52(n+1)+5⋮n+1
55⋮n+1hay n+1∈Ư(5)={±1;±5}n+1∈Ư(5)={±1;±5}
b, 4n+94n+9⋮2n+3
2(2n+3)+32(2n+3)+3⋮2n+3
33⋮2n+3hay 2n+3∈Ư(3)={±1;±3}2n+3∈Ư(3)={±1;±3}