K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{1}{\sqrt{x}+2}\)

A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0

9 tháng 12 2019

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.

7 tháng 11 2016

bai de the nay ma cung phai hoi

8 tháng 11 2016

de p ko pt ms hoi 

18 tháng 12 2016

\(a,ĐK:\hept{\begin{cases}x\ge0\\\sqrt{x}+2\ne0\\\sqrt{x}-2\ne0;4-x\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

Rút gọn :

\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}+\frac{5\sqrt{x}-6}{4-x}\)

\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}-\frac{5\sqrt{x}-6}{x-4}\)

\(A=\frac{4\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{4\sqrt{x}-8+2\sqrt{x}+4-5\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{1}{\sqrt{x}-2}\)

\(b,\)Để A nhận giá tri nguyên \(\Leftrightarrow\frac{1}{\sqrt{x}-2}\) nguyên

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)

Vậy A có giá tri nguyên \(\Leftrightarrow x\in\left\{1;9\right\}\)

Bài 1:

\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

2 tháng 7 2020

Cảm ơn bạn nhé !