tim gia tri nho nhat (a+1)(a+3)(a+5)(a+7)+15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)
\(\Rightarrow2x=-\frac{1}{3}\)
\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)
Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)
Để A có giá trị dương
Thì 5n - 7 chia hết cho 9
Nên : 5n - 7 thuôc BC của 9
=> BC(9) = {0;9;18;27;......}
=> 5n - 7 = {0;9;18;27;......}
=> 5n = {7;16;25;32;........}
=> mà n là số tự nhiên nhỏ nhất và A đạt giá trị dương nhỏ nhất
Nên => 5n = 25
=> n = 5
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
GTNN 15
(a + 1)(a + 3)(a + 5)(a + 7)+15 = (a + 1)(a + 7)(a + 5)(a + 3)+15 = (a2 + 8a +7)(a2 + 8a +15) + 15
Đặt a2 + 8a + 11 = x => (a2 + 8a +7)(a2 + 8a +15) + 15 = (x-4)(x+4) +15 = x2 - 4 + 15 = x2 +11 \(\ge\)11
GTNN (a + 1)(a + 3)(a + 5)(a + 7) + 15 = 11 \(\Leftrightarrow\)x =0 \(\Leftrightarrow\)a2 + 8a + 11 = 0 \(\Leftrightarrow\)(a + 4)2 -5 = 0 \(\Leftrightarrow\)(a + 4 +\(\sqrt{5}\))(a + 4 -\(\sqrt{5}\))=0 \(\Leftrightarrow\)a = -4+ \(\sqrt{5}\)hoặc a = -4 - \(\sqrt{5}\)