K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Bạn Nguyễn Hà Vy là đúng rồi, chỉ hơi nhầm (viết thiếu) khi viết căn bậc hai của 9 thôi.

Trình bày lại bài làm của bạn Hà Vy như sau:

\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7=8-1< \sqrt{64}-1< \sqrt{65}-1\)

2 tháng 11 2016

\(\sqrt{8}\)+\(\sqrt{15}\)<9+\(\sqrt{16}\)=3+4=8-1=\(\sqrt{64}\)-1<\(\sqrt{65}\)-1

10 tháng 8 2016

ta tính VT ra rồi so sánh với VP

22 tháng 6 2017

a,Ta có:

  \(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)

\(12^2=144\)

Do 69<144 nên ...

b,tương tự ý a

ta thấy \(\sqrt{65}>\sqrt{64}\Leftrightarrow\sqrt{65}-1>\sqrt{64}-1\)

mà ta có \(\sqrt{64}-1=8-1=4+3=\sqrt{16}+\sqrt{9}\)

lại có \(\sqrt{16}>\sqrt{15};\sqrt{9}>\sqrt{8}\Leftrightarrow\sqrt{16}+\sqrt{9}>\sqrt{15}+\sqrt{8}\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$

11 tháng 11 2018

\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

3 tháng 8 2023

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

3 tháng 8 2023

So sánh gì thế em, em nhập đủ đề vào hi

27 tháng 6 2017

Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\) (1)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\) (2)

Từ (1) và (2) suy ra \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)