Tìm số tự nhiên n, biết
a, n+8 chia hết n+1
b,10 chia hết cho 2n-1
c, n*( n+1 ) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a)\(n+8⋮n-1\)
\(\Leftrightarrow n-1+9⋮n-1\)
\(\Leftrightarrow9⋮n-1\)
\(Do\)\(n\in N\)\(\Rightarrow n-1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
\(\Rightarrow n\in\left\{0;2;8\right\}\)
Các phần khác tương tự
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a, 6 chia hết cho n-1
=>n-1 thuộc Ư(6)={1;2;3;6}
=>n thuộc {2;3;4;7} (vì n thuộc N)
b,14 chia hết cho 2n+3
=>2n+3 thuộc Ư(14)={1;2;7;14}
=>n thuộc {2} (vì n thuộc N)
c , n+8 chia hết n+1
=>n+1+7 chia hết n+1
=>7 chia hết n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;6} (vì n thuộc N)
a, n+8 chia hết n+1
=>n+8=n+1+7
=>n+1+7 chia het cho n+1
=>n+1 chia hết cho n+1
=>7 chia hết cho n+1
mà 7 chia hết cho 1;7
b,10 chia hết cho 2n-1
mà 10 chia hết cho 1;2;5;10
c, nx( n+1 ) = 6
=>6=n2+n
=>6 chia hết cho n2 va n
mà 6 chia hết cho 1;2;3;6
=>\(\orbr{\begin{cases}n^2=1;2;3;6\\n=1;2;3;6\end{cases}}\)
(bảng dưới k cần ke)
vậy n=1
\(a,n+8⋮n+1\)
\(< =>n+1+7⋮n+1\)
\(Do:n+1⋮n+1\)
\(< =>7⋮n+1\)
\(< =>n+1\inƯ\left(7\right)\)
Nên ta có bảng sau :
Vì \(n\inℕ=>n\in\left\{0;6\right\}\)
\(b,10⋮2n+1\)
\(< =>10n+5-5⋮2n+1\)
\(Do:10n+5⋮2n+1\)
\(< =>5⋮2n+1\)
\(< =>2n+1\inƯ\left(5\right)\)
Nên ta có bảng sau :
Vì \(n\inℕ=>n\in\left\{0;2\right\}\)
\(c,n.\left(n+1\right)=6\)
\(=>n;n+1\inƯ\left(6\right)\)
Nên ta có bảng sau :
\(Do:n\inℕ=>n\in\left\{...\right\}\)