CMR nếu ab = 2.cd thì abcd chia hết cho 67
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)
\(=100.2.\overline{cd}+\overline{cd}\)
\(=200.\overline{cd}+\overline{cd}\)
\(=201.\overline{cd}⋮67\)
Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)
số abcd = 100ab+cd=200cd+cd (vì ab = 2cd)
hay = 201cd
Mà 201 \(⋮\) 67
Do đó : nếu ab = 2cd thì abcd \(⋮\) 67
abcd = cd x 2 x 100 + cd
abcd = cd x 200 + cd
abcd = cd x 201
abcd = cd x 3 x 67
=> abcd chia hết cho 67
Ta có :
\(abcd=cd×2×100+cd\)
\(abcd=cd×200+cd\)
\(abcd=cd×201\)
\(abcd=cd×3×67\)
\(\Rightarrow\)abcd chia hết cho 67
abcd = 1000a + 100b + 10c + d = 100ab + cd = 200 cd + cd = 201 cd
Mà 201 chia hết cho 67
=> ab = 2cd chia hết cho 67
abcd=100ab+cd=200cd+cd(vì ab=2cd)
hay 201cd
mà 201 chia hết cho 67
=> đpcm
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
\(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.2.\overline{cd}+\overline{cd}=200.\overline{cd}+\overline{cd}=201.\overline{cd}=67.3.\overline{cd}\) chia hết cho 67
Ta có đpcm.
abcd = ab x 100 + cd
= 100 . 2 . cd + cd
= 200 . cd + cd
= 201 cd
= 67 . 3 . cd
67 chia hết cho 67 nên abcd chia hết cho 67 ( đpcm )