Chứng minh rằng với Vn \(\in\)|N, n chẵn thì: A=20n+16n-3n-1 chia hết cho 323
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919
Ta có
20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn) (∗)(∗)
Mặt khác
20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1
và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17 (∗∗)(∗∗)
Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)
Ta có :
\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn ) (1)
Mặt khác :
\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)
Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\) (2)
Từ (1) và (2) suy ra đpcm
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
diendantoanhoc.net/topic/112485-cho-n-là-số-tự-nhiên-chẵn-cmr-a20n16n-3n-1-chia-hết-cho-323/
Nhận thấy \(323=17.19\) và ƯCLN\(\left(17;19\right)=1\) nên ta cần chứng minh \(20^n-1+16^n-3^n\) chia hết cho số \(17\) và \(19\)
Ta có:
\(20^n-1⋮\left(20-1\right)=19;\)\(16^n-3^n⋮\left(16+3\right)=19\) (vì \(n\) chẵn) (∗)
Mặt khác:
\(20^n+16^n-3^n-1=20^n-3^n+16^n-1\)
và \(20^n-3^n⋮\left(20-3\right)=17;\)\(16^n-1⋮\left(16+1\right)=17\) (∗∗)
Từ (∗) và (∗∗) ta suy ra đpcm
Tương tự như câu của nguyễn thị hà uyên bên trên nhé