1x2+1x3+1x4+1x5=?
trao đổi với mik nha các pạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\times2}\) + \(\frac{1}{1\times3}\) + \(\frac{1}{1\times4}\) + \(\frac{1}{1\times5}\) + \(\frac{12}{10}\)
= \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\) + \(\frac{12}{10}\)
= \(\frac{149}{60}\)
(a - 19.99) : 2 = 1 x 1 + 1 x 2 + 1 x 3 + 1 x 4 +...+ 9 x 7 + 9 x 8 + 9 x 9
(a - 19.99) : 2 = 1 x (1 + 2 + 3 + 4 + 5 + 6 + 7 )
a) \(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2.\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=2.\left(1-\dfrac{1}{100}\right)\)
\(=2.\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
_____
b) \(\dfrac{3}{1\times5}+\dfrac{3}{5\times9}+\dfrac{3}{9\times13}+...+\dfrac{3}{97\times101}\)
\(=3.\left(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{97\times101}\right)\)
\(=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=3.\left(1-\dfrac{1}{101}\right)\)
\(=3.\dfrac{100}{101}\)
\(=\dfrac{300}{101}\)
Sửa đề tí :
\(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{2013\cdot2015}\)
\(S=\frac{3}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2013\cdot2015}\right]\)
\(S=\frac{3}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right]\)
\(S=\frac{3}{2}\left[1-\frac{1}{2015}\right]=\frac{3}{2}\cdot\frac{2014}{2015}=\frac{3021}{2015}\)
Ta có : S = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +......+1/2013-1/2015
Ta gạch các phân số ở giữa còn lại 1/1 - 1/2015=2014/2015
Vậy S = 2014/2015
K 2 LẦN NHÉ
=14
k mik nha
1 x 2 + 1 x 3 + 1 x 4 + 1 x 5
= 2 + 3 + 4 + 5
= 6 + 4 + 5
= 10 + 5
= 15