Chứng minh (3n)^100 chia hết cho 81 với mọi giá trị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (3n)100
=3100.n100
=34.396.n100
=81.396.n100
Vì 81 chia hết cho 81
=> 81.396.n100
Vậy (3n)100 chia hết cho 81
Ta có : ( 3n )100 = ( 3n )4.25 = 34.25.n4.25 = 8125 . n100 chia hết cho 81
Vậy ( 3n )100 chia hết cho 81 ( dpcm )
Ta có:
\(\left(3n\right)^{100}=3^{100}.n^{100}\)
\(=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
Vậy ....
Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)
Vậy...
~~~~~~~~~~~~~
a: \(P=-\left|5-x\right|+2019\le2019\forall x\)
Dấu '=' xảy ra khi x=5
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)
=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)
Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n
( 3n ) 100
= 3 100 . n 100
= 3 4 . 3 96 . n 100
= 81 . 3 96 . n 100
Vì 81 chia hết cho 81
=> 81 . 3 96 . n 100 cha hết cho 81
Vậy ( 3n ) 100 chia hết cho 81
(3n) 100
=3100 . n 100
=34. 396.n100
=81. 396. n100
vì 81 có thể chia cho hết cho 81
vậy => 81. 396. n100
vậy (3n) 100 chia hết cho 81