cho hinh 69 sach giao khoa lop 7 tap 1 trang 114
chung minh rang MN song song voi PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.một đường cong kín biểu diễn một tập hợp , mỗi dấu chấm trong 1 đường cong
kín biểu diễn một phần tử của tập hợp đó . hãy xét xem bút có phải là 1 phần tử của tập hợp h hay ko.
ta có A = {15;26}; B = { 1;a;b}; M = { bút}; H= { sách ; vở ;bút }
5.vì mỗi quý có 3 tháng nên ta có : A = { tháng 4; tháng 5; tháng 6}
tháng 2 có 28 hoặc 29 ngày . mỗi tháng còn lại chỉ có 30 hoặc 31 ngày . tháng 7 và tháng 8 đều có 31 ngày. xen giữa 2 tháng 31 ngày là 1 tháng có ít hơn 31 ngày.
Vậy B = { tháng 4; tháng 6; tháng 9; tháng 11}.
Hai tam giác ADE và OCB có:
OB = AD = r
BC = DE ( giả thiết )
OC = AE = r
\(\Rightarrow\Delta ADE=\Delta OBC\) (c.c.c)
Vậy \(\widehat{DAE}=\widehat{xOy}\) ( góc tương ứng) (đpcm)
Hai tam giác ACB và ADB có:
AC = AD = 2 cm
BC = BD = 3 cm
AB cạnh chung
\(\Rightarrow\Delta ACB=\Delta ADB\) (c.c.c)
\(\Rightarrow\widehat{CAB}=\widehat{DAB}\) ( góc tương ứng )
Vậy AB là tia phân giác của góc CAD
bài 22
Tam giác DAE và BOC có:
AD=OB(gt)
DE=BC(gt)
AE=OC(gt)
Nên ∆ DAE= ∆ BOC(c.c.c)
suy ra ˆDAEDAE^=ˆBOCBOC^(hai góc tương tứng)
vậy
ˆDAE=ˆxOy.DAE^=xOy^.
bài 23
Vì CC là giao của đường tròn tâm AA và tâm BB nên AC=2cm,BC=3cmAC=2cm,BC=3cm
Vì DD là giao của đường tròn tâm AA và tâm BB nên AD=2cm,BD=3cmAD=2cm,BD=3cm
Do đó AC=AD,BC=BDAC=AD,BC=BD
Xét ΔBAC∆BAC và ΔBAD∆BAD có:
+) AC=ADAC=AD
+) BC=BDBC=BD
+) ABAB cạnh chung.
Suy ra ΔBAC=ΔBAD(c.c.c)∆BAC=∆BAD(c.c.c)
Suy ra ˆBACBAC^ = ˆBADBAD^ (hai góc tương ứng)
Vậy ABAB là tia phân giác của góc CADCAD.
Bài 2 :
a) 135m = 1350 dm ; 342dm = 3420 cm; 15cm = 150 mm
b) 8300m = 830 dam; 4000m = 40 hm; 25 000m =25 km
c) 1mm = 1/10cm; 1cm = 1/100 m ; 1m = 1/1000 km
Bài 3 :
a) 4km 37m = 4037m b) 354dm = 35m 4dm
8m 12cm = 812cm 3040m = 3km 40m.
Bài 4 :
Đường sắt từ Đà Năng đến TP. Hồ Chí Minh dài:
791 + 144 = 935 (km)
Đường sắt từ Hà Nội đến TP. Hồ Chí Minh dài:
791 +935 = 1726 (km)
Đáp số: a) 935km
b) 1726km.
Câu 1 tự làm nhé , tk mh nhé , mơn nhìu !!!
~ HOK TỐT ~
TL :
a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.
Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.
Khi đó chứng minh được Cp song song với Ds.
Tương tự chứng minh được Ar song song với Dm.
Từ đó suy ra được: An // Cp và Dm // Bq.
b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.
Từ đó suy ra được: An vuông góc với Bq.
Hok tốt
Ta có MD // AE (vì MD // AB)
ME //AD (vì ME // AC)
Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I
GT: Cho hình 82, trong đó MD // AB, ME // AC
KL: Chứng minh A đối xứng với M qua I
GIẢI:
Ta có: MD // AE (vì MD // AB)
ME // AD (vì ME // AC)
Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I
Tìm ƯCLN rồi tìm các ước chung của:
a) 16 và 24; b) 180 và 234; c) 60, 90, 135.
Bài giải:
a) ƯCLN (16, 24) = 8, ƯC (16, 24) = {1; 2; 4; 8};
b) Ta có 180 = 22 . 32 . 5; 234 = 2 . 32 . 13;
ƯCLN (180, 234) = 2 . 32 = 18, ƯC (180, 234) = {1; 2; 3; 6; 9; 18};
c) Ta có 60 = 22 . 3 . 5; 90 = 2 . 32 . 5; 135 = 33 . 5. Do đó
ƯCLN (60, 90, 135) = 3 . 5 = 15; ƯC (60, 90, 135) = {1; 3; 5; 15}.
Các thông tin cần biết khi tham gia Giúp tôi giải toán
"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
II. Cách nhận biết câu trả lời đúng
Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:
1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)
2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)
3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.
4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.
5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)
6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.
III. Thưởng VIP cho các thành viên tích cực
Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng 1 tháng VIP cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.
a) 14 . 50 = (14 : 2)(50 . 2) = 7 . 100 = 700;
16 . 25 = (16 : 4)(25 . 4) = 4 . 100 = 400.
b) 2100 : 50 = (2100 . 2) : (50 . 2) = 4200 : 100 = 42;
1400 : 25 = (1400 . 4) : (25 . 4) = 5600 : 100 = 56.
c) 132 : 12 = (120 + 12) : 12 = 120 : 12 + 12 : 12 = 10 + 1 = 11;
96 : 8 = (80 + 16) : 8 = 80 : 8 + 16 : 8 = 10 + 2 = 12.
Các thông tin cần biết khi tham gia Giúp tôi giải toán
"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
II. Cách nhận biết câu trả lời đúng
Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:
1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)
2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)
3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.
4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.
5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)
6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.
III. Thưởng VIP cho các thành viên tích cực
Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng 1 tháng VIP cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.
Ta có:
∆ MNQ = ∆ QPM (c.c.c)
vì MN = QP (gt)
NQ = PM(gt)
MQ = QM(cạnh chung)
MN=PQ ; MP = NQ ; hai tam giác có cạnh chung là MQ
=> \(\)MN // PQ
MP // NQ