K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)

Vậy biểu thức P xác định khi x≠ -2 và x≠ 2

b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)

P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(​​​​\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)

P=\(\dfrac{5x-10}{(x-2)(x+2)}\)

P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)

P=\(\dfrac{5}{x+2}\)

Vậy P=\(\dfrac{5}{x+2}\)

21 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

29 tháng 5 2019

Đáp án x ∈ 1 ; 3 ; 5 .

30 tháng 1 2019

a, A xác định

\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)

\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)

\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)

b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)

\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)

\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)

c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)

\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)

Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)

30 tháng 3 2019

Bài của Hùng rất thông minh

Đang định có cách khác mà dài hơn cách Hùng nên thui

^^ 2k5 kết bạn nhé 

14 tháng 11 2018

a,ĐKXĐ: \(x^2-4\ne0\) \(\Leftrightarrow x\ne\pm2\)

b,Rút gọn:

\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^3-4x\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\)

\(=x-1\)

Để C = 0 thì x - 1 = 0

                => x = 1

Vậy : Để C = 0 thì x = 1

c,Để C nhận giá trị dương thì C > 0

Hay: x - 1 > 0

<=> x > 1

Vậy: Để C dương thì x > 1

=.= hok tốt!!

31 tháng 5 2017

\(C=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

=> C nguyên dương khi và chỉ khi x -1 >0 => x > 1 như vậy với x nguyên dương lớn hơn 1 thì C nguyên dương

31 tháng 5 2017

\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{x^2-4}=\frac{x^3-x^2-2x-2x+4}{x^2-4}\)

\(C=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{x^2-4}=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}=x-1\)

\(\Rightarrow C\in Z^+\)với  \(x>1\)

14 tháng 12 2016

ta có x^2 -4 = (x-2)(x+2)

đkxđ của C là x khác 2 và trừ 2

\(\frac{x^3}{x^2-4}\)\(\frac{x}{x-2}\)\(\frac{2}{x+2}\)\(\frac{x^3}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x}{x-2}\)\(\frac{2}{x+2}\)

\(\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)= x- 1

để C = 0 => x-1 = 0

=> x= 1 ( thỏa mãn điều kiện xác định)

c, để C dương 

=> x-1 dương 

=> x-1 >0

=> x>1

14 tháng 12 2016

a) Để biểu thức xác định \(\Rightarrow\hept{\begin{cases}x^2-4\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

\(\Rightarrow x\ne2;-2\)

Vậy ...

b) \(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-\left(x^2+2x\right)-\left(2x-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^3-x^2\right)-\left(4x-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 \(\Rightarrow x-1=0\) 

\(\Rightarrow x=1\)

Vậy ...

c) Để C > 0 thì \(x-1>0\Rightarrow x>1\)

Vậy ...

30 tháng 5 2016

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)