Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) Chứng minh rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật.
c) Chứng minh 3 điểm M, C, N thẳng hàng
a: Xét tứ giác BOCM có
I là trung điểm chung của BC và OM
=>BOCM là hbh
=>OC//BM và OC=BM
Xét tứ giác DOCN có
K là trung điểm chung của DC và ON
=>DOCN là hbh
=>DN//OC và DN=OC
=>DN//BM và DN=BM
=>BDNM là hbh
c: BO//CM
NC//DO
mà B,O,D thẳng hàng
nên M,C,N thẳng hàng