K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

a. Thay \(x=-2\) vào đồ thị hàm số P ta được

     \(y=f\left(-2\right)=\dfrac{1}{2}\left(-2\right)^2=2\)

c. Phương trình hoành độ giao điểm (P) và (d) :

\(2x+6=\dfrac{1}{2}x^2\\ \Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)

\(\Delta'=\left(-1\right)^2-\left(-6\right).\dfrac{1}{2}\\ =1+3\\ =4>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=4\\ x_2=-12\)

Vậy phương trình có 2 nghiệm phân biệt \(x_1=4;x_2=-12\)

Câu 2: 

c) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=2x+6\)

\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2-4x+4=16\)

\(\Leftrightarrow\left(x-2\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Thay x=6 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot6^2=18\)

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)

Câu 3: 

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)

Ta có: \(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)

\(=2^3-3\cdot\left(-1\right)\cdot2\)

\(=8+3\cdot2\)

\(=8+6=14\)

Vậy: P=14

11 tháng 12 2016

gdgdgfgdgd

12 tháng 12 2016

tội nghiệt bạn giữa cái bài từ hôm qua tới giờ mà chưa ai giải

28 tháng 11 2023

a:

loading...

b: phương trình hoành độ giao điểm là:

4x+2=2x-2

=>4x-2x=-2-2

=>2x=-4

=>x=-2

Thay x=-2 vào y=4x+2, ta được:

\(y=4\cdot\left(-2\right)+2=-8+2=-6\)

Vậy: M(-2;-6)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\4x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Vậy: B(1;0); A(-1/2;0)

d: M(-2;-6); B(1;0); A(-1/2;0)

\(MA=\sqrt{\left(-\dfrac{1}{2}+2\right)^2+\left(0-6\right)^2}=\dfrac{3\sqrt{17}}{2}\)

\(MB=\sqrt{\left(1+2\right)^2+\left(0+6\right)^2}=3\sqrt{5}\)

\(AB=\sqrt{\left(-\dfrac{1}{2}-1\right)^2+\left(0-0\right)^2}=\dfrac{3}{2}\)

Chu vi tam giác MAB là:

\(C_{MAB}=MA+MB+AB=\dfrac{3}{2}+3\sqrt{5}+\dfrac{3\sqrt{17}}{2}\)

Xét ΔMAB có \(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{9}{\sqrt{85}}\)

=>\(sinAMB=\sqrt{1-\left(\dfrac{9}{\sqrt{85}}\right)^2}=\dfrac{2}{\sqrt{85}}\)

Diện tích tam giác MAB là:

\(S_{AMB}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{17}}{2}\cdot3\sqrt{5}\cdot\dfrac{2}{\sqrt{85}}\)

\(=\dfrac{9}{2}\)

 

4 tháng 11 2016

Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2

2 tháng 12 2016

1,04 m

tk mk nha

mk sẽ tk lại

hứa mà