Bài 6: (3,5 điểm) Cho AABC vuông tại A, có AC = 5 cm, BC = 13 cm. a) Tính AB và so sánh hai góc ABC và góc ACB b) Trên tia đổi của tia AC, vẽ điểm D sao cho A là trung điểm của CD. Chứng minh: AABC= AABD c) Vẽ điểm K là trung điểm của BC. Gọi G là giao điểm của AB và DK. Chứng minh BG = 2GA. d) Gọi H là trung điểm của AD. Qua H vẽ đường thẳng vuông góc với AD cắt BD tại E. Chứng minh 3 điểm E, G, C thắng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=16cm
XétΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
c: Xét ΔBAC và ΔBDC có
BA=BD
\(\widehat{ABC}=\widehat{DBC}\)
BC chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ΔBCD vuông tại D
a: AC=16cm
XétΔABC có AB<AC<BC
nên ˆC<ˆB<ˆAC^<B^<A^
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
c: Xét ΔBAC và ΔBDC có
BA=BD
ˆABC=ˆDBCABC^=DBC^
BC chung
Do đó: ΔBAC=ΔBDC
Suy ra: ˆBAC=ˆBDC=900BAC^=BDC^=900
Do đó: ΔBCD vuông tại D
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét tam giâc ABC
có: AB< AC ( 4 cm < 6 cm)
=> góc ACB < góc góc ABC ( quan hệ cạnh với góc đối diện)
b) Xét tam giác ABM vuông tại A và tam giác CDM vuông tại C
có: AM = CM ( gt)
góc AMB = góc CMD ( đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta CDM\left(cgv-gn\right)\)
c) ta có: \(AM=CM=\frac{AC}{2}=\frac{6}{2}=3cm\)
\(\Rightarrow AM=CM=3cm\)
Xét tam giác ABM vuông tại A
có: \(AB^2+AM^2=BM^2\left(py-ta-go\right)\)
thay số: \(4^2+3^2=BM^2\)
\(BM^2=25\)
\(\Rightarrow BM=5cm\)
Xét tam giác ABC
có: BN = CN (gt)
=> AN là đường trung tuyến của BC
có: AM = CM (gt)
=> BM là đường trung tuyến của AC
mà AN cắt BM tại G
=> G là trọng tâm của\(\Delta ABC\)( định lí)
\(\Rightarrow\frac{GM}{BM}=\frac{1}{3}\)( định lí)
thay số: \(\frac{GM}{5}=\frac{1}{3}\Leftrightarrow GM=\frac{1}{3}.5=\frac{5}{3}cm\)
\(\Rightarrow GM=\frac{5}{3}cm\)
a: AB=12cm
Xét ΔABC có AC<AB
nên \(\widehat{ABC}< \widehat{ACB}\)
b: Xét ΔABC vuông tại A vàΔABD vuông tại A có
AB chung
AC=AD
DO đó: ΔABC=ΔABD
c: Xét ΔBDC có
AB là đường trung tuyến
DK là đường trung tuyến
BA cắt DK tại G
Do đó: G là trọng tâm
=>BG=2GA