Vẽ XAy và tia phân giác At. Lấy điểm D trên At vẽ đoạn thẳng DB vuông góc với à ở B. Lấy điểm C trên Ay sao cho AC=AB.Chứng minh DB=DC và DC vuông góc với Ay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔBAD=ΔCAD
Suy ra: \(\widehat{ABD}=\widehat{ACD}=90^0\) và DB=DC
=>DC vuông góc với Ay
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔABD=ΔACD
=>AB=AC và DB=DC
Xét ΔABC có AB=AC
nên ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
c: Xét ΔDBN vuông tại B và ΔDCM vuông tại C có
DB=DC
\(\widehat{BDN}=\widehat{CDM}\)(hai góc đối đỉnh)
Do đó: ΔDBN=ΔDCM
d: Ta có: ΔDBN=ΔDCM
=>DN=DM và BN=CM
Ta có: AB+BN=AN
AC+CM=AM
mà AB=AC và BN=CM
nên AN=AM
=>A nằm trên đường trung trực của NM(3)
ta có: DM=DN
=>D nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra AD là đường trung trực của MN
Xét ΔAMN có \(\dfrac{AB}{BN}=\dfrac{AC}{CM}\)
nên BC//MN
a) Xét ΔABE và ΔADC có
AB=AD(gt)
\(\widehat{DAC}\) chung
AE=AC(gt)
Do đó: ΔABE=ΔADC(c-g-c)
Suy ra: BE=DC(hai cạnh tương ứng)
b) Ta có: ΔABE=ΔADC(cmt)
nên \(\widehat{ABE}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ABE}+\widehat{DBC}=180^0\)(hai góc kề bù)
và \(\widehat{ADC}+\widehat{ODE}=180^0\)(hai góc kề bù)
nên \(\widehat{OBC}=\widehat{ODE}\)
Xét ΔOBC và ΔODE có
\(\widehat{OBC}=\widehat{ODE}\)(cmt)
BC=DE
\(\widehat{OCB}=\widehat{OED}\)(ΔACD=ΔAEB)
Do đó: ΔOBC=ΔODE(g-c-g)
c) Ta có: AC=AE(gt)
nên A nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MC=ME(M là trung điểm của CE)
nên M nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của CE(đpcm)
Bạn tự vẽ hình nhé !
\(\Delta ADB,\Delta ADC\)có AB = AC ;\(\widehat{BAD}=\widehat{CAD}\)(At là phân giác góc xAy) ; chung AD
\(\Rightarrow\Delta ADC=\Delta ADB\left(c.g.c\right)\)\(\Rightarrow\hept{\begin{cases}DC=DB\\\widehat{ACD}=\widehat{ABD}\end{cases}}\)mà\(\widehat{ABD}=90^0\)(DB _|_ Ax tại B) =>\(\widehat{ACD}=90^0\)=>DC _|_ Ay
thks nạk