Cho đường tròn (O) bản kính 6cm và điểm 4 nằm ngoài đường tròn sao cho OA = 10cm. Từ A vẽ hai tiếp tuyến AB,AC với đường tròn (O). B; C là tiếp điểm và H là giao điểm của OA với BC.
a). Tính độ dài AB và BH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Theo giả thiết có:
`AB=AC`
`OB=OC`
=> AO là đường trung trực của đoạn BC
=> AO⊥BC
b
Ta có:
`OB=OC=R`
Gọi điểm giao nhau của BC và OA là H có:
`HB=HC`
Từ trên suy ra: HO là đường trung bình của ΔCDB
=> HO//BD
=> OA//BD (H nằm trên đoạn OA)
c
AB là tiếp tuyến đường tròn.
=> OB⊥AB
Lại có: BH⊥OA (cmt)
Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:
\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)
\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
a: \(AB=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2
=>góc OAB=30 độ
=>góc BAC=60 độ
=>ΔBAC đều
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
a: \(AB=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
mà OB=OC
nên AO là đường trung trực của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(BH\cdot AO=BO\cdot BA\)
hay BH=4,8(cm)
cho hỏi thêm xíu là tại sao BH là đường cao ạ