Tìm 2 số tự nhiên a va b biết a+b=30 BCNN(a,b) = 6 lần ƯCLN(a,b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Ta có : BCNN(a,b)=30 và ƯCLN(a,b)=15
\(\Rightarrow\)BCNN(a,b).ƯCLN(a,b)=ab=30.15=450
a+15=b\(\Rightarrow\)b-a=15\(\Rightarrow\)b>a
Vì ƯCLN(a,b)=15 nên ta có : \(\hept{\begin{cases}a=15m\\b=15n\\ƯCLN\left(m,n\right)=1;m>n\end{cases}}\)
Vì ab=450
\(\Rightarrow\)15m.15n=450
\(\Rightarrow\)225m.n=450
\(\Rightarrow\)mn=2
Mà ƯCLN(m,n)=1 và m>n nên ta có bảng sau :
m 2
n 1
a 30
b 15
Vậy a=30 và b=15.