K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

Giúp mình zớ

i

9 tháng 10 2018

Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC 
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )

23 tháng 3 2016

Gọi M. N, P và Q theo thứ tự là trung điểm các cạnh AB, CD, BC và DA của tứ giác lồi ABCD

Khi đó :

\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)  và \(\overrightarrow{PQ}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{CD}\right)\)

Ta có : \(\left|\overrightarrow{MN}\right|+\left|\overrightarrow{PQ}\right|=\frac{1}{2}\left(\left|\overrightarrow{AD}+\overrightarrow{BC}\right|+\left|\overrightarrow{BA}+\overrightarrow{CD}\right|\right)\)

                                  \(\le\frac{1}{2}\left(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|+\left|\overrightarrow{BA}\right|+\left|\overrightarrow{CD}\right|\right)\)

Dấu đẳng thức xảy ra khi và chỉ khi \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{BC}\) và \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)

Suy ra điều cần chứng minh

23 tháng 3 2016

A B C D M N Q P