Một dãy biểu thức có dạng sau: 1;3+5;7+9+11;13+15+17+19;21+23+25+27+29;...Chứng minh rằng mỗi sô hạng của dãy đều là lũy thừa bậc 3 của 1 số nguyên dương nào đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1=1^3\)
\(3+5=8=2^3\)
\(7+9+11=27=3^3\)
\(13+15+17+19=64=4^3\)
\(21+23+25+27+29=125=5^3\)
Nhận xét về dãy số. Ta thấy rằng dã số này thì có 2 tính chất cần chú ý.
Thứ 1: Số hạng thứ n là tổng của n số lẻ liên tiếp.
Thứ 2: Số bé nhất trong n số của số hạng n sẽ có dạng: \(2k+1\)(với k là tổng số chữ số của (n - 1) số hạn trước đó:
(Ví dụ: Số hạng thứ 5 trong dãy sẽ có \(k=1+2+3+4=10\)sợ you không hiểu chỗ này nên cho ví dụ đấy)
Giờ ta chứng minh với n bất kỳ thì dãy này luôn đúng yêu cầu bài toán:
Xét số thứ n trong dãy:
Ta có \(k=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Số hạng thứ n của dãy sẽ là: \(\left(2k+1\right)+\left(2k+3\right)+...+\left(2k+1+2\left(n-1\right)\right)\)
\(=2kn+\left(1+3+...+\left(2n-1\right)\right)\)
\(=2kn+n^2\)
\(=2.\frac{n\left(n-1\right)}{2}.n+n^2=n^2\left(n-1+1\right)=n^3\)
Vậy bài toán đã được chứng minh.
–x3 + 3x2 – 3x + 1
= (–x)3 + 3.(–x)2.1 + 3.(–x).1 + 13
= (–x + 1)3 (Áp dụng HĐT (4) với A = –x và B = 1)
Chọn đáp án C
(2) Đúng.Các chất được sắp xếp theo thứ tự tính axit giảm (tính bazo tăng) dần.
(4) Đúng. dung dịch brom có khả năng tác dụng với S O 3 2 -
(6) Đúng.Theo SGK lớp 12 .