K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

Giao điểm của \(\left(C\right)\) và \(\left(d\right)\) có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x^2+y^2-25=0\\x+y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-25=0\\x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-8\\x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{3+\sqrt{41}}{2}\\y=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{3-\sqrt{41}}{2}\\y=\dfrac{3+\sqrt{41}}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{3+\sqrt{41}}{2};\dfrac{3-\sqrt{41}}{2}\right)\\\left(\dfrac{3-\sqrt{41}}{2};\dfrac{3+\sqrt{41}}{2}\right)\end{matrix}\right.\)

Kết luận: Tọa độ giao điểm: \(\left\{{}\begin{matrix}\left(\dfrac{3+\sqrt{41}}{2};\dfrac{3-\sqrt{41}}{2}\right)\\\left(\dfrac{3-\sqrt{41}}{2};\dfrac{3+\sqrt{41}}{2}\right)\end{matrix}\right.\)

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

4 tháng 11 2019

Chọn B.

Vì đường tròn (C) cắt Δ tại hai điểm phân biệt A và B nên tọa độ điểm A và B là nghiệm của hệ phương trình:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Gọi H là trung điểm của AB suy ra IH ⊥ AB ⇒ IH ⊥ Δ.

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Xét tam giác AIH vuông tại H ta có:

A H 2  + I H 2  = A I 2  ⇒ A H 2  = A I 2  - I H 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

15 tháng 1 2017

17 tháng 2 2017

10 tháng 3 2019

Đáp án đúng : A

29 tháng 7 2016
x01
y=4x−3−31
x01
y=−x+221

Ta có phương trình hoàng độ giao điểm:

4x−3=−x+2

⇔5x=5

⇔x=1

⇒y=−x+2=−1+2=1

Vậy 2 đồ thị cắt nhau tại A(1;1)

29 tháng 7 2016
\(x\)\(0\)\(1\)
\(y=4x-3\)\(-3\)\(1\)
\(x\)\(0\)\(1\)
\(y=-x+2\)\(2\)\(1\)

1 2 3 1 2 3 -1 -2 -3 y=4x-3 y=-x+2 A

Ta có phương trình hoàng độ giao điểm:

\(4x-3=-x+2\)

\(\Leftrightarrow5x=5\)

\(\Leftrightarrow x=1\)

\(\Rightarrow y=-x+2=-1+2=1\)

Vậy 2 đồ thị cắt nhau tại \(A\left(1;1\right)\)

21 tháng 4 2018

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)

⇒ OO’ ⊥ Δ tại trung điểm I của OO’.

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

OO’ ⊥ Δ ⇒ OO’ nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà O(0, 0) ∈ OO’

⇒ Phương trình đường thẳng OO’: x + y = 0.

+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.

+ Trung điểm I của OO’ là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy O’(–2; 2).

b)

+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.

O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.

Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.

Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.

⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà A(2; 0) ∈ O’A

⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.

M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy điểm M cần tìm là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

10 tháng 5
Để giải bài toán này, ta cần tìm phương trình của đường thẳng delta và tìm điểm cắt của đường thẳng đó với đường tròn (C). Sau đó, tính độ dài đoạn thẳng AB và tìm 6a + 3b.1. Tìm phương trình của đường thẳng delta: Vì đường thẳng delta đi qua điểm H(-2;2), nên ta có thể viết phương trình của delta dưới dạng: ax + by + 1 = 0 Thay H vào phương trình trên, ta được: -2a + 2b + 1 = 0 => a = (2b + 1) / 22. Tìm điểm cắt của đường thẳng delta với đường tròn (C): Để tìm điểm cắt, ta giải hệ phương trình giữa phương trình đường thẳng delta và phương trình đường tròn (C).3. Tính độ dài đoạn thẳng AB: Sau khi tìm được hai điểm A và B, ta tính độ dài AB bằng công thức khoảng cách giữa hai điểm trong mặt phẳng Oxy.4. Tính 6a + 3b: Sau khi tìm được a và b, ta tính 6a + 3b để đưa ra kết quả cuối cùng. 
9 tháng 5 2021

Trước hết ta thấy O, A nằm trên cùng một mặt phẳng bờ \(\Delta\).

Qua A kẻ đường thẳng d vuông góc với \(\Delta\) tại H.

Đường thẳng d có phương trình: \(x+y-2=0\)

\(\Rightarrow H\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow H=\left(0;2\right)\)

Gọi A' là điểm đối xứng với A qua d

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=-2\\y_{A'}=2y_H-y_A=4\end{matrix}\right.\Rightarrow A'=\left(-2;4\right)\)

\(\Rightarrow OA'=2\sqrt{5}\)

Phương trình đường thẳng OA': \(2x+y=0\)

Khi đó: \(OM+MA=OM+MA'\ge OA'=2\sqrt{5}\)

\(min=2\sqrt{5}\Leftrightarrow M\) là giao điểm của \(\Delta\) và OA'

\(\Leftrightarrow M\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\2x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{2}{3};\dfrac{4}{3}\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

Vì $M$ thuộc $\Delta$ nên $M$ có tọa độ $(a-2,a)$

Độ dài đường gấp khúc $OMA$ là:

$OM+MA=\sqrt{a^2+(a-2)^2}+\sqrt{(a-4)^2+a^2}$

$=\sqrt{2}.(\sqrt{(a-1)^2+1}+\sqrt{(2-a)^2+2^2})$

$\geq \sqrt{2}.\sqrt{(a-1+2-a)^2+(1+2)^2}$ (theo BĐT Mincopxky)

$=2\sqrt{5}$

Vậy $OMA$ min bằng $2\sqrt{5}$. Giá trị này đạt tại $a=\frac{4}{3}$

Vậy $M(\frac{-2}{3},\frac{4}{3})$