K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

19 tháng 5 2021

1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)

\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)

\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)

Giải:

1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)  

\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\) 

\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\) 

\(=0+\dfrac{2020}{2021}\) 

\(=\dfrac{2020}{2021}\) 

2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\) 

\(=\dfrac{2}{9}+\dfrac{7}{9}:7\) 

\(=\dfrac{2}{9}+\dfrac{1}{9}\) 

\(=\dfrac{1}{3}\) 

3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\) 

            \(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\) 

            \(\dfrac{x}{4}=\dfrac{-1}{8}\)  

\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\) 

4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\) 

            \(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\) 

            \(\left|3x-1\right|=0\) 

             \(3x-1=0\) 

                    \(3x=0+1\) 

                    \(3x=1\) 

                      \(x=1:3\) 

                      \(x=\dfrac{1}{3}\) 

Chúc bạn học tốt!

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

31 tháng 10 2020

\(\left(8^{2020}+8^{2019}\right):8^{2019}\)   

\(=\frac{8^{2020}+8^{2019}}{8^{2019}}\)   

\(=\frac{8^{2019}\cdot\left(8^1+1\right)}{8^{2019}}\)   

\(=8^1+1\)   

\(=8+1\)  

\(=9\)

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)

\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)

\(\Leftrightarrow A>B\)

1 tháng 12 2023

\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)

\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

Ta có :

\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)

\(\Rightarrow A-B< 0\)

\(\Rightarrow A< B\)

Vậy ta được \(A< B\)

1 tháng 12 2023


 

 

12 tháng 3 2022

undefined

12 tháng 3 2022

\(a.=\dfrac{2019}{2020}\times\left(\dfrac{4}{11}+\dfrac{5}{11}+\dfrac{2}{11}\right)\\ =\dfrac{2019}{2020}\times1=\dfrac{2019}{2020}\\ b.=\dfrac{25}{27}\times\left(\dfrac{17}{14}-\dfrac{1}{14}-\dfrac{2}{14}\right)\\ =\dfrac{25}{27}\times1=\dfrac{25}{27}\)