K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

`1/42 + 1/56 + 1/72 + .... + 1/9900`

`= 1/( 6*7) + 1/( 7*8 ) + ..... + 1/( 99*100)`

`= 1/6 - 1/7 + 1/7-1/8+....+1/99-1/100`

`= 1/6 - 1/100`

`= 50/300 - 3/300`

`= 47/300` 

12 tháng 5 2022

\(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{9900}\\ =\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{6}-\dfrac{1}{100}=\dfrac{47}{300}\)

27 tháng 1 2022

Sai môn rồi

27 tháng 1 2022

nhầm , sửa rồi đó 

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}\)

\(=\frac{24}{100}=\frac{6}{25}\)

2 tháng 5 2019

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)

\(\Rightarrow A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{100}\)

\(\Rightarrow A=\frac{25}{100}-\frac{1}{100}\)

\(\Rightarrow A=\frac{24}{100}\)

\(\Rightarrow A=\frac{6}{25}\)

17 tháng 5 2015

A= 1/30 +1/42+1/56+1/72+....+1/210

A=1/5x6 +1/6x7+1/7x8+1/8x9+...+1/14x15

A=1/5 -1/6+1/6-1/7+1/7-1/8+1/8-1/9+.....+1/14-1/15

A= 1/5 - 1/15 

A= 2/15

17 tháng 5 2015

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)

=\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)=\(\frac{1}{5}-\frac{1}{15}\)

=\(\frac{3}{15}-\frac{1}{15}\)

=\(\frac{2}{15}\)

 

TH
Thầy Hùng Olm
Manager VIP
4 tháng 6 2023

\(\dfrac{1}{20}=\dfrac{1}{4x5}=\dfrac{1}{4}-\dfrac{1}{5}\)

Tương tự các phân số khác

S= \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)

4 tháng 6 2023

\(\dfrac{1}{20}+\dfrac{1}{30}\)\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)

\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\)+\(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)

\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{12}\)

\(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)

\(\dfrac{3}{12}\) - \(\dfrac{1}{12}\)

\(\dfrac{2}{12}\)

=\(\dfrac{1}{6}\)

29 tháng 5 2022

`=1/[4xx5]+1/[5xx6]+1/[6xx7]+...+1/[11xx12]`

`=1/4-1/5+1/5-1/6+1/6-1/7+...+1/11-1/12`

`=1/4-1/12=3/12-1/12=2/12=1/6`

29 tháng 5 2022

\(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\\ =\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}\\ =\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)

9 tháng 5 2016

sai đề ở 1/200

9 tháng 5 2016

uk 200 fai là 210 ms đúng

11 tháng 5 2017

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)

\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{14\cdot15}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)

11 tháng 5 2017

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{5}-\frac{1}{15}\)

\(A=\frac{2}{15}\)