K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Kẻ tiếp tuyến MN chung của haid dường tròn

Xét (O) có

NE,NM là tiếp tuyến

=>NE=NM

Xét (I) có NF,NM là tiếp tuyến

=>NF=NM=NE

=>ΔEMF vuông tại M

Xét ΔEMF vuông tại M và ΔAKB vuông tại K có

góc MEF=góc KAB

=>ΔEMF đồng dạng với ΔAKB

b: góc KEM=góc KFM=góc EMF=90 độ

=>KEMF là hcn

23 tháng 5 2020

56/21

13 tháng 8 2016

 Nhận thấy tứ giác MFNE có góc M và N vuông --> góc MFN+góc MEN= 2 vuông (*) 
Lại có các tam giác AFB và MEN đồng dạng (vì có góc NME=gocFAB và góc MNE =góc FBA), suy ra góc AFB=góc MEN --> góc MFN=góc MEN (**), từ (*); (**) suy ra góc MFN=góc MEN =1 vuông 
--> tứ giác MENF là hình chữ nhật, từ đó dễ dàng suy ra tiếp FE vuông góc với AB 
b) Gọi I ; K lần lượt là trung điểm của O1O2 và MN. Áp dụng Talét dễ dàng tính được IK=5 
--> KD^2=ID^2-IK^2 =9^2 -5^2 =56 --> CD=2.KD= 4√14

13 tháng 8 2016

Dài lắm,

1 tháng 11 2018

giúp em với ạ? hiccc :<

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ

a: Xét (O) có

OM là bán kính

EF vuông góc OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM.EA là tiếp tuyến

nên EM=EA
Xét(O) có

FM,FB là tiếp tuyến

nên FM=FB

EF=EM+MF

=>EF=EA+FB