Phân tích đa thức thành nhân tử: \(x^7+x^5+1\)
giúp mik nha!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhớ mình nha mình âm diểm rồi:
M=(x+2)(x+3)(x+4)(x+5)-24
M=(x2+3x+2x+6)(x2+5x+4x+20)-24
M=(x2+5x+6)(x2+9x+20)-24
M=x4+9x3+20x2+5x3 +14x+100x+6x2+54x+120-24
M=x4+14x3+26x2+168x+96
\(M=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+3\right)\left(x+4\right)\left(x+2\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+12\right)\left(x^2+7x+10\right)-24\)
\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25\)
\(=\left(x^2+7x+11\right)^2-25\)
\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+6\right)\)
\(x\left(x-y\right)+2\left(y-x\right)=x\left(x-y\right)-2\left(x-y\right)=\left(x-y\right)\left(x-2\right)\)
\(=x\left(x-y\right)-2\left(x-y\right)=\left(x-2\right)\left(x-y\right)\)
\(=5^{^2}.\left(x+5\right)^2-3^2.\left(x+7\right)^2\)
\(=\left(5x+25\right)^2-\left(3x+21\right)^2\)
\(=\left(5x+25+3x+21\right)\left(5x+25-3x-21\right)\)
\(=\left(8x+46\right)\left(2x+4\right)\)
\(=4\left(2x+23\right)\left(x+2\right)\)
= 52 ( x + 5)2 - 32 (x +7)2
=[ 5 ( x +5) ]2 - [ 3 ( x + 7) ]2
= ( 5x + 25)2 - ( 3x + 21)2
= ( 5x + 25 - 3x - 21) - ( 5x + 25 + 3x + 21)
= ( 2x +4) - ( 8x +46)
= -6x - 42
= -6 ( x + 7)
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
\(f\left(x\right)=x^6+x^3-x^2-1\)
\(f\left(x\right)=x^6-x^3+2x^3-2x^2+x^2-1\)
\(f\left(x\right)=x^3\left(x-1\right)\left(x^2+x+1\right)+2x^2\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)
\(f\left(x\right)=\left(x-1\right)\left(x^5+x^4+x^3+2x^2+x+1\right)\)
Xét đa thức \(g\left(x\right)=x^5+x^4+x^3+2x^2+x+1\) có bậc 5 là số lẻ. Khi đó giả sử tồn tại 2 đa thức \(h\left(x\right)\) và \(j\left(x\right)\) hệ số nguyên sao cho:
\(g\left(x\right)=h\left(x\right).j\left(x\right)\). Khi đó 1 trong 2 đa thức \(h\left(x\right),j\left(x\right)\) phải có bậc lẻ (vì nếu cả 2 đều bậc chẵn thì thành thử bậc của \(g\left(x\right)\) phải chẵn, mâu thuẫn theo trên).
Không mất tổng quát, giả sử đa thức \(h\left(x\right)\) có bậc lẻ. Khi đó nếu nó có nghiệm hữu tỉ thì gọi nghiệm hữu tỉ này là \(x=\dfrac{p}{q}\left(p,q\inℤ;\left(p,q\right)=1\right)\) thì \(p|1,q|1\) nên \(x=\pm1\). Thử lại, ta thấy 2 nghiệm này đều không thỏa mãn.
Do đó, \(g\left(x\right)\) không có nghiệm vô tỉ nên ta không thể phân tích tiếp \(f\left(x\right)\) thành nhân tử được nữa.
\(=x^8-x^7+x^5-x^4+x^2+x^7-x^6+x^4-x^3+x+x^6-x^5+x^3-x^2+1\)
\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)+\left(x^6-x^5+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Ta có: x^7 + x^5 + 1 = x^7 - x + x^5 - x^2 + x^2 + x + 1
=x(x^6 - 1) + x^2(x^3 - 1) + (x^2 +x +1)
=x(x^3 -1)(x^3 +1) +x^2(x^3-1) + (x^2 + x + 1)
=x(x-1)(x^2 + x +1)(x^3 +1) + x^2(x-1)(x^2 +x +1) +(x^2 +x +1)
=(x^2 +x +1)[x(x-1)(x^3 +1) +x^2(x-1) +1]
=(x^2 +x +1)[ x^5 - x^4 + x^3 - x + 1]