K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

Suy ra: AH=CK

Xét tứ giác AHCK có 

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: Ta có: AHCK là hình bình hành

nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của HK

nên O là trung điểm của AC

hay A,O,C thẳng hàng

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AE = EB = \frac{1}{2}AB\) (do \(E\) là trung điểm của \(AB\))

\(DF = FC = \frac{1}{2}CD\) (\(F\) là trung điểm của \(CD\))

\(AB = CD\) (do \(ABCD\) là hình bình hành)

Suy ra \(AE = CF = EB = DF\)

Xét tứ giác \(AECF\) ta có:

\(AE\) // \(CF\) (do \(AB\) // \(CD\))

\(AE = CF\)

Suy ra \(AECF\) là hình bình hành

b) Vì \(AB = 2AD\) (gt) và \(AB = 2AE\)  (do \(E\) là trung điểm của \(AB\))

Suy ra \(AD = AE\)

Xét tứ giác \(AEFD\) có \(AE\) // \(DF\) và \(AE = DF\) (cmt)

Suy ra \(AEFD\) là hình bình hành

Mà \(AE = AD\) (cmt)

Suy ra \(AEFD\) là hình thoi

c) Ta có \(AF \bot DE\) (do \(AEFD\) là hình thoi)

và \(AF\) // \(EC\) (\(AECF\) là hình bình hành)

Suy ra \(EC \bot DE\)

Suy ra \(\widehat {IEK} = 90^\circ \)

Vì \(AEFD\) là hình thoi nên \(EF = AE\)

Và \(AE = \frac{1}{2}AB\) (gt)

Suy ra \(EF = \frac{1}{2}AB\)

Xét \(\Delta AFB\) có \(FE\) là đường trung tuyến và \(EF = \frac{1}{2}AB\)

Suy ra \(\Delta AFB\) vuông tại \(F\)

Suy ra \(\widehat {{\rm{IFK}}} = 90\)

Xét tứ giác \(EIFK\) ta có:

\(\widehat {{\rm{EIF}}} = 90\) (do \(AF \bot DE\))

\(\widehat {{\rm{IEK}}} = 90^\circ \) (cmt)

\(\widehat {{\rm{IFK}}} = 90^\circ \) (cmt)

Suy ra \(EIFK\) là hình chữ nhật

d) \(EIFK\) là hình vuông

Suy ra \(FI = EI\)

Mà \(EI = ID = \frac{1}{2}DE\) ( do \(AEFD\) là hình thoi)

\(FI = IA = \frac{1}{2}AF\)  (do \(AEFD\) là hình thoi)

Suy ra \(AF = DE\)

Mà \(AEFD\) là hình thoi

Suy ra \(AEFD\) là hình chữ nhật

Suy ra \(\widehat {{\rm{ADC}}} = 90^\circ \)

Mà \(ABCD\) là hình bình hành (gt)

Suy ra \(ABCD\) là hình chữ nhật

Vậy nếu hình bình hành \(ABCD\) là hình chữ nhật thì \(EIFK\) là hình vuông

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0
26 tháng 12 2020
Giúp mình đi mọi người
22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành