K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔBAC vuông tại A

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

\(\widehat{ABM}=\widehat{NBM}\)

Do đó: ΔBAM=ΔBNM

Suy ra: MA=MN

26 tháng 4 2019

Hình tự vẽ

a) ΔABC vuông tại A.

Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)

           BC2 = 102 = 100 (cm)    

Vì AB2 + BC2 = BC2 ( = 100 cm)

Nên ΔABC vuông tại A.

b) MA = MN.

Xét hai tam giác vuông ABM và NBM có:

BM: cạnh chung

∠ABM = ∠NBM (BM là phân giác của ∠ABC)

Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)

⇒  MA = MN (hai cạnh tương ứng)

c) ΔAMP = ΔNMC. MP > MN.

Xét hai tam giác vuông AMP và NMC có:

AM = MN (câu b)

∠AMP = ∠NMC (hai góc đối đỉnh) 

Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)

⇒ PM = MC (hai cạnh tương ứng) (1)

Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)

Từ (1) và (2) suy ra: MP > MN

29 tháng 4 2019

a, Ta có : BC2 = 102 = 100

AB2 + AC2 = 62 + 82 = 36 + 64 = 100

=> AB2 + AC2 = BC2

=> Tam giác ABC vuông tại A ( Định lý Py - ta - go đảo )

Study well ! >_<

29 tháng 4 2019

a)Xét\(\Delta ABC\)có:\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

Ta thấy:\(BC^2=AB^2+AC^2\left(=100\right)\)

\(\Rightarrow\Delta ABC\)cân tại A(Định lí Py-ta-go)

b)Xét\(\Delta MAB\)\(\Delta MNB\)có:

MB là cạnh chung

\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)

\(\widehat{MBA}=\widehat{MBN}\)(BM là tia p/g của \(\widehat{ABN}\))

Do đó:\(\Delta MAB=\Delta MNB\)(cành huyền-góc  nhọn)

\(\Rightarrow MA=MN\)(2 cạnh t/ứ)

c)Xét\(\Delta MAP\)\(\Delta MNC\)có:

\(MA=MN\)(cmt)

\(\widehat{AMP}=\widehat{NMC}\)(2 góc đối đỉnh)

\(\widehat{MAP}=\widehat{MNC}\left(=90^o\right)\)

Do đó:\(\Delta MAP=\Delta MNC\)(cạnh gv-góc nhọn)

\(\Rightarrow MP=MC\)(2 cạnh t/ứ)

Ta có:MN<MC(ĐL mối QH giữa đường vg và đg xiên)

mà MC=MP(cmt)

\(\Rightarrow MN< MP\)hay MP>MN

7 tháng 5 2019

a.

Xét  \(\Delta ABC\) có:

\(AB^2+AC^2=6^2+8^2=100=10^2\)

Theo định lý Pythagoras đảo thì  \(\Delta ABC\) vuông tại A

b.

Xét  \(\Delta ABM\) và  \(\Delta NBM\) có:

\(\widehat{ABM}=\widehat{NBM}\)

BM là cạnh chung

\(\widehat{BAM}=\widehat{BNM}=90^0\)

\(\Rightarrow\Delta ABM=\Delta NBM\left(ch-gn\right)\Rightarrow MA=MN\) 

c.

Xét  \(\Delta PAM\) và  \(\Delta CNM\) có:

\(MA=MN\)

\(\widehat{PAM}=\widehat{MNC}\)

\(\widehat{AMP}=\widehat{CMN}\)

\(\Rightarrow\Delta PAM=\Delta CNM\left(g.c.g\right)\Rightarrow MN=MP\)

Do  \(\Delta MNC\) vuông tại N nên \(MC>MN\left(ch>cgv\right)\)

\(\Rightarrow MP>MN\)

20 tháng 4 2019

A B C 8 CM 6 CM 10 CM M N

A B C 1 2 M N P

Bài làm

a) Ta có: 

AB2 + AC2 = 62 + 8= 36 + 64 = 100

BC2 = 102 = 100

=> 100 = 100 hay AB2 + AC2 = BC2 

=> Tam giác ABC vuông tại A ( Định lí Py-tha-go )

b) Xét tam giác BAM và tam giác BNM có:

\(\widebat{BAM}=\widebat{BNM}\left(=90^0\right)\)

Cạnh huyền: BM chung

Góc nhọn: \(\widebat{B_1}=\widebat{B_2}\)( BM là tia phân giác của góc B )

=> Tam giác BAM = tam giác BNM ( cạnh huyền-góc nhọn )

=> MA = MN ( hai cnahj tương ứng )

Vậy MA = MN 

c) Xét tam giác AMP và tam giác NMC có:

\(\widehat{MAP}=\widehat{MNC}=\left(=90^0\right)\)

MA = MN ( chứng minh trên )

\(\widehat{AMP}=\widehat{NMC}\)( Hai góc đối đỉnh )

=> Tam giác AMP = tam giác NMC ( g.c.g )

=> MP = MC ( hai cạnh tương ứng )

Mà trong tam giác vuông, cạnh huyền luôn lớn hơn 2 cạnh còn lại. 

Xét tam NMC vuông tại N có:

MC là cạnh huyền 

=> MC > MN

Mà MP = MC

=> MP > MN

Vậy MP > MN ( đpcm )

# Chúc bạn học tốt #

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

=>DE<DF

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

d: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

mà DF=DC

nên BD là trung trực của CF

11 tháng 3 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)

b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:

\(BMchung.\)

\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).

\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)

\(\Rightarrow AB=KB.\)

\(\Rightarrow\Delta ABK\) cân tại B.

c) Xét \(\Delta ABK\) cân tại B:

\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)

Xét \(\Delta BDC:\)

DK là đường cao \(\left(DC\perp BC\right).\)

CA là đường cao \(\left(CA\perp AB\right).\)

Mà M là giao điểm của DK và CA.

\(\Rightarrow\) M là trực tâm.

\(\Rightarrow\) BM là đường cao.

Xét \(\Delta DBC:\)

BM là đường cao (cmt).

BM là đường phân giác (gt).

\(\Rightarrow\Delta DBC\) cân tại B.

\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)

Từ (1) (2) \(\Rightarrow\text{​​}\text{​​}\widehat{AKB}=\widehat{DCB}.\)

\(\Rightarrow AK//CD.\)

10 tháng 4 2022

a) Xét ΔABCΔABC vuông tại A:

BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).

b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:

BMchung.BMchung.

ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).

⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).

⇒AB=KB.⇒AB=KB.

⇒ΔABK⇒ΔABK cân tại B.

c) Xét ΔABKΔABK cân tại B:

ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).

Xét ΔBDC:ΔBDC:

DK là đường cao (DC⊥BC).(DC⊥BC).

CA là đường cao (CA⊥AB).(CA⊥AB).

Mà M là giao điểm của DK và CA.

⇒⇒ M là trực tâm.

⇒⇒ BM là đường cao.

Xét ΔDBC:ΔDBC:

BM là đường cao (cmt).

BM là đường phân giác (gt).

⇒ΔDBC⇒ΔDBC cân tại B.

ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).

Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒​​​​AKB^=DCB^.

⇒AK//CD.

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó; ΔABD=ΔEBD