thánh nào làm hộ em với
rút gọn M=5^2016-5^2015-5^2014-...-5-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2016}-5^{2015}-....-5-1\)
\(=5^{2016}-\left(5^{2015}+5^{2014}+....+5+1\right)\)
\(=5^{2016}-\left(5^{2016}-1\right)\)
\(=5^{2016}-5^{2016}+1\) \(=0+1=1\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>5M=5(52016−52015−52014−...−5−1)
=>5M=52017−52016−52015−...−52−5
=>5M−M=(52017−52016−52015−...−52−5)−(52016−52015−52014−...−5−1)
=>
M = 52016 - (52015 + 52014 + ... + 5 + 1) = 52016 - (52016 - 1) = 52016 - 52016 + 1 = 0 + 1 = 1
\(A=1+5^2+5^3+...+5^{2015}+5^{2016}\)
\(5A=5+5^3+5^4+...+5^{2016}+5^{2017}\)
\(4A=\left(5+5^3+5^4+...+5^{2016}+5^{2017}\right)-\left(1+5^2+5^3+...+5^{2015}+5^{2016}\right)\)
\(=5+5^{2017}-\left(1+5^2\right)\)
\(=4+5^{2017}-5^2\)
\(A=\frac{4+5^{2017}-5^2}{4}\)
Ta có : 5A = 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
=> 5A - A = ( 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017 ) - ( 1 + 5^2 + 5^3 + ... + 5^2015 + 5^2016 )
=> 4A = 4 + 5^2 + 5^2017
=> A = ( 4 + 5^2 + 5^2017 )/4
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
phân số dài này sẽ bằng 1
Đ/s : = 1
phân số lơn luôn là số tự nhiên
nhé !
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
\(M=5^{2016}-5^{2015}-5^{2014}-...-5-1\)
=>\(5M=5\left(5^{2016}-5^{2015}-5^{2014}-...-5-1\right)\)
=>\(5M=5^{2017}-5^{2016}-5^{2015}-...-5^2-5\)
=>\(5M-M=\left(5^{2017}-5^{2016}-5^{2015}-...-5^2-5\right)-\left(5^{2016}-5^{2015}-5^{2014}-...-5-1\right)\)
=>\(4M=5^{2017}-2.5^{2016}+1\)
=>\(M=\frac{5^{2017}-2.5^{2016}+1}{4}\)
thanks nha