phân tích đa thức thành nhân tử: \(\sqrt[3]{x^2+26}+3\sqrt{x}+\sqrt{x+3}=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
\(8+3\sqrt{3}x^3\)
\(=2^3+\left(1\sqrt{3}x\right)^3\)
\(=\left(2+1\sqrt{3}x\right)\left(4-2\sqrt{3}x+3x^2\right)\)
(Nhớ k cho mình với nhá!)
\(x-6\sqrt{x-3}+6\text{=}x-3-6\sqrt{x-3}+9\)
\(\text{=}\left(\sqrt{x-3}\right)^2-2.3.\sqrt{x-3}+\left(3\right)^2\)
\(\text{=}\left(\sqrt{x-3}-3\right)^2\)
A = \(x-6\)\(\sqrt{x-3}\) + 6 (đkxd \(x>3\))
A = (\(x\) - 3) - 2.3.\(\sqrt{x-3}\) + 9
A = (\(\sqrt{x-3}\))2 - 2.3.\(\sqrt{x-3}\) + 32
A = (\(\sqrt{x-3}\)- 3)2