\(\dfrac{2005x2004+1}{2005x2003+2004}_{_{_{_{_{ }}}}}\)
Giúp mình nha thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 2004 - 1 / 2003 + 2004
= 2003 / 2007
mình ko biết có đúng ko nữa
2005 x 2004 - 1/2003 x 2005 + 2004
=2004 x ( 2005 + 1 ) - ...?
= 2005 x ( 2003 + 1 ) - 1/ 2003 x 2005 + 2004
= 2005 x 2003 + 2005 x 1 - 1/ 2003 x 2005 + 2004
= 2005 x 2003 + 2005 -1/ 2003 x 2005 + 2004
= 2003 x 2005 + 2004/ 2003 x 2005 + 2004
= 1 ( vì TS=MS)
Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)
\(=\dfrac{2006}{2007}\)
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
=\(\frac{2005\times2004-1}{2003\times2005+\left(2005-1\right)}\)
=\(\frac{2005\times2004-1}{2003\times2005+2005-1}\)
=\(\frac{2005\times2004-1}{\left(2003+1\right)\times2005-1}\)
=\(\frac{2005\times2004-1}{2004\times2005-1}\)
=1
\(\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)
\(\dfrac{2005.2006-1}{2004.2006}=1-\dfrac{1}{2005.2006}\)
\(Vì\dfrac{1}{2004.2005}>\dfrac{1}{2005.2006}\Rightarrow1-\dfrac{1}{2004.2005}< 1-\dfrac{1}{2005.2006}\Rightarrow\dfrac{2004.2005-1}{2004.2005}< \dfrac{2005.2006-1}{2004.2006}\)
\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999+2004}\).
Có sai đề không vậy???
Sửa đề một chút :v
\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999\cdot2004}\)
\(=\frac{1}{5}\left[\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{5}{1999\cdot2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{1999}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\cdot\frac{125}{501}=\frac{25}{501}\)
Đặt A =1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004. Ta có:
A= 1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004
5A= 5/4 x 9 + 5/9 x 14 + 5/14 x 19 +...+ 5/1999 + 2004
5A= 1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 +...+ 1/1999 - 1/2004
5A= 1/4 - 1/2004
A= (1/4 - 1/2004)/5
Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!
Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Dấu . tức là nhân nhé!
\(\dfrac{2002\times2003+4004}{2005\times2004-4010}\\ =\dfrac{2002\times2003+2002\times2}{2005\times2004-2005\times2}\\ =\dfrac{2002\times2005}{2005\times2002}\\ =1\)
mình biết lám nhưng ko biết dấu chia phân số
toán rút gọn mức cao mà vào lớp 5 giải giúp ?!
ủa mà rút gọn đẹp rồi , mở rộng ra nữa là sao?