Khi hỏi địa chỉ nhà của bạn B ,bạn B nói:
Mình ở đường A,số nhà là số có 3 chữ số mà hai chữ số đầu cũng như hai chữ số cuối lập thành các số chính phương và số này gấp 4 lần số kia. Tìm số nhà của bạn B ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét thấy số chính phương là bình phương của một số tự nhiên (vd: 4;9;16;....)
=> 2 chữ số cuối sẽ là a^2
Nếu a=9 thì a^2=81 ( không thỏa mãn đk)
Nếu a=8 thì a^2=64 và chữ số đầu là 1
=> 64:16=4
vậy số đó là 164
gọi số cần tìm là abc .
ta có :
ab ; bc là lập thành các số chính phương .
các số chính phương có 2 chữ số :
16 ; 25 ; 36 ; 49 ; 64 ; 81 .
tách dãy số trên thành từng cặp mà chữ số hàng đơn vị của số thứ nhất bằng hàng chục của số thứ 2 , ta có :
36 và 64
81 và 16
16 và 64
mà 36 và 64 không thỏa mãn yêu cầu vì 64 : 36 = 2
81 và 16 cũng không thỏa mãn , vậy chỉ có 16 và 64
số này là :
164
đ/s : 164
2.
Gọi quãng đường cần tìm là s.---> vận tốc Xuân= s/12,
--> vận tốc Hạ=s/10
thời gian Xuân gặp Hạ: 50/(s/12)= (s-50)/(s/10)
50x12/s= (s-50)x10/s
50x12=10s-500
---> s = (500+50x12)/10= 110
quãng đường giữa nhà hai bạn là 110m
4.
Khi ngược dòng 1 giờ ta đi được số phần quãng sông là:
1 : 8 = 1/8 (quãng sông)
Khi xuôi dòng 1 giờ ta đi được số phần quãng sông là:
1 : 4 = 1/4 (quãng sông)
Bèo trôi theo ta về 1 giờ trôi được số phần quãng sông là:
(1/4 - 1/8) : 2 = 1/16 (quãng sông)
Bèo trôi theo ta về cập bến sau số giờ là:
1 : 1/16 = 16 (giờ)
Đ/s: 16 giờ
Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))
TH1: \(\overline{ab}=4\overline{bc}\)
=> \(10a+b=40b+4c\)
=> \(10a=39b+4c\)
Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)
=> 10a \(\ge39\)
=> a \(\ge4\)
Do \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\in\left\{49;64;81\right\}\)
- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)
- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)
- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)
TH2: \(4\overline{ab}=\overline{bc}\)
=> 40a + 4b = 10b + c
=> 40a = 6b + c
Mà \(b\le9;c\le9\)
=> 6b + c \(\le63\)
=> 40a \(\le63\)
=> a \(\le1\)
=> a = 1
Mà \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\) = 16
=> b = 6
=> c = 4
Vậy số cần tìm là 164
2 chữ số đầu là số có 2 chữ số là M=10a+b và 4M<100<==>M<25==>M=16
Thấy 4M=64 cũng là số chính phương nên chỉ có duy nhất 1 số là 164.