2(x+x2)-x(2x-1)
(2x+3)2-(x-1)2-3x(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
Bạn chú ý đăng lẻ câu hỏi! 1/
a/ \(=x^3-2x^5\)
b/\(=5x^2+5-x^3-x\)
c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)
d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)
e/ \(=x^4-x^2+2x^3-2x\)
f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)
a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)
=3x-2-2x^2+2x-5x+5
=-2x^2+3
b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)
c: =x^3-3x^2+3x-1-x^3-1+9x^2-1
=6x^2+3x-3
\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)
\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)
\(=-2x^2+3\)
\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)
\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)
\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)
\(=\left(2x+1\right)\left(4x-5\right)\)
\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)
\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)
\(=-3x^2+3x-2-3x+9x^2-1+3x\)
\(=6x^2+3x-3\)
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)