1: Cho các biểu thức sau : 22y ; χ + 2y ; χy2 ; -3y ;\(\dfrac{5}{2xy}\); \(\dfrac{-2}{3}\) X2y
a) Biểu thức nào là đơn thức
b) Chỉ ra các đơn thức đồng dạng
cậu gì đó ơi ngủ chưa ạ , giúp tớ đựt hog:<
tớ theo dõi lại choa<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
c: =(x-2)(x-4)
b: \(=x\left(x^2+2xy+y^2-4\right)\)
=x(x+y-2)(x+y+2)
a. Đơn thức \(2^2y;xy^2;-3y;\dfrac{5}{2xy};-\dfrac{2}{3}x^2y\)
b. Đơn thức đồng dạng : \(2^2y;-3y\)