Phân tích thành nhân tử:
\(x^6-x^4-9x^3+9x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (x^6 - x^4) - (9x^3 - 9x^2)
= x^4 (x^2 +1) - 9x^2 (x - 1)
= x^4 (x + 1) (x - 1) - 9x^2 (x - 1)
= (x - 1) {x^4 (x + 1) - 9x^2}
= (x - 1) (x^5 + x^4 - 9x^2)
= (x -1) {x^2 (x^3 + x^2 - 9)}
x6 - x 4- 9x3 + 9x2
= (x6 - x 4) - (9x3 - 9x2)
= x4 (x2 - 1) - 9x2 (x - 1)
= x4 (x-1) (x+1) - 9x2 (x - 1)
= x2 (x-1) (x2 (x+1) - 9)
= x2 (x-1) (x3 + x2 - 9)
`@` `\text {Ans}`
`\downarrow`
`4x^3 - 4x^2 - 9x + 9`
`= (4x^3 - 4x^2) - (9x - 9)`
`= 4x^2(x - 1) - 9(x - 1)`
`= (4x^2 - 9)(x - 1)`
____
`x^3 + 6x^2 + 11x + 6`
`= x^3 + x^2 + 5x^2 + 5x + 6x + 6`
`= (x^3 + x^2) + (5x^2 + 5x) + (6x + 6)`
`= x^2*(x + 1) + 5x(x + 1) + 6(x + 1)`
`= (x^2 + 5x + 6)(x+1)`
____
`x^2y - x^3 - 9y + 9x`
`= (x^2y - 9y) - (x^3 - 9x)`
`= y(x^2 - 9) - x(x^2 - 9)`
`= (y - x)(x^2 - 9)`
b: =x^3+x^2+5x^2+5x+6x+6
=(x+1)(x^2+5x+6)
=(x+1)(x+2)(x+3)
c: =x^2(y-x)-9(y-x)
=(y-x)(x^2-9)
=(y-x)(x-3)(x+3)
a: =(4x^3-4x^2)-(9x-9)
=4x^2(x-1)-9(x-1)
=(x-1)(4x^2-9)
=(x-1)(2x-3)(2x+3)
\(x^6-x^4-9x^3+9x^2\)
\(=x^6-x^5+x^5-x^4-9x^2\left(x-1\right)\)
\(=x^5\left(x-1\right)+x^4\left(x-1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^4.\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4.\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left[x^4.\left(x+1\right)-9x^2\right]\)
x6 - x4 - 9x3 + 9x2
= x4.(x2 - 1) - 9x2.(x - 1)
= x4.(x - 1).(x + 1) - 9x2.(x - 1)
= (x - 1).(x5 + x - 9x2)
= (x - 1).x.(x4 + 1 - 9x)
x^6-x^4-9x^3+9x^2
=x^2(x^4-x^2-9x+9)
=x^2[x^2(x^2-1)-9(x-1)]
=x^2[x^2(x-1)(x+1)-9(x-1)]
=x^2(x-1)[x^2(x+1)-9)]
=x^2(x-1)(x+1)(x^2-9)
=x^2(x-1)(x+1)(x-3)(x+3)
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
\(1-27x^3\)
\(=1-\left(3x\right)^3\)
\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)
\(---\)
\(x-3^3+27\)
\(=x-27+27=x\)
\(---\)
\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(---\)
\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)
\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)
\(=\left(\dfrac{x^2}{3}-y\right)^3\)
#Ayumu
\(x^6-x^4-9x^3+9x^2\)
\(\left(x^6-x^4\right)-\left(9x^3-9x^2\right)\)
\(x^4\left(x^2-x\right)-9x\left(x^2-x\right)\)
\(\left(x^2-x\right)\left(x^4-9x\right)\)