a)(3x - 2)/3 > 1
b)4x-1/2<2x-3/5
Dạ giải giúp em với a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2=\left(3x+2\right)^2-\left(3x+1\right)^2=\left(3x+2-3x-1\right)\left(3x+2+3x+1\right)=1.\left(6x+3\right)=6x+3\)
b) \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2=1-16x^4-4x^2-12x-9=-16x^4-4x^2-12x-8\)
a: \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2\)
\(=9x^4+12x+4-9x^2-6x-1\)
=6x+3
b: \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2\)
\(=1-16x^4-4x^2-12x-9\)
\(=-16x^4-4x^2-12x-8\)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
thỏ_con
Ko biết thì nói làm gì bạn
Công nhận bạn rảnh dễ sợ luôn
@@@
a ) \(x^3+3x^2-3x+1\)
\(=x^3-3x+3x^2-1\)
\(=\left(x-1\right)^3\)
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
a, \(\dfrac{3x-2}{3}-1>0\Leftrightarrow\dfrac{3x-5}{3}>0\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{5}{3}\\x\ne\dfrac{5}{3}\end{matrix}\right.\)
b, \(\dfrac{4x-1}{2}-\dfrac{2x-3}{5}< 0\Leftrightarrow\dfrac{20x-5-4x+6}{10}< 0\Leftrightarrow\left\{{}\begin{matrix}x< -\dfrac{1}{16}\\x\ne-\dfrac{1}{16}\end{matrix}\right.\)