cho S = 7\(^{2023}\) - 7\(^{2022}\) + 7\(^{2021}\) - ... 7\(^2\) + 7 + 7\(^1\)
a) Hỏi S có chia hết cho 6 không, vì sao?
B) Tìm chữ số tận cùng của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì viết thêm 3 chữ số vào bên phải số 345 được số mới chia hết cho 3;7;8 nên số mới là BC(3;7;8)
3 = 3; 7 = 7; 8 = 8; BCNN(3;7;8) = 3.7.8 = 168
Số mới có dạng: \(\overline{345abc}\)
Theo bài ra Ta có: \(\overline{345abc}\) ⋮ 168
345000 + \(\overline{abc}\) ⋮ 168
2053.168 + 96 + \(\overline{abc}\) ⋮ 168
96 + \(\overline{abc}\) ⋮ 168
⇒ 96 + \(\overline{abc}\) \(\in\) B(168) = {0; 168; 336; 504; 672; 850; 1008;1176;...;}
⇒ \(\overline{abc}\) \(\in\) {-96; 72; 240; 336; 504; 682; 912; 1080;..;}
Vì 100 ≤ \(\overline{abc}\) ≤ 999
Vậy \(\overline{abc}\) \(\in\) {240; 336; 504; 682; 912}
Kết luận:...
Bài 2:
S = {1; 4; 7; 10;13;16...;}
Xét dãy số trên là dãy số cách đều với khoảng cách là
4 - 1 = 3
Mà 2023 - 1 = 2022 ⋮ 3 vậy
2023 là phần tử thuộc tập S.
S = 72013 - 72012 + 72011 - 72010 + ........ + 73- 72 + 7 - 1
= (72013 - 72012) + (72011 - 72010) + ........ + (73- 72) + (7 - 1)
= 72012(7 - 1) + 72010(7 - 1) + ... + 72(7 - 1) + (7 - 1)
= 72012.6+ 72010.6 + ... + 72.6+ 6
= 6(72012 + 72010 + .... + 72) \(⋮\)6
=> S \(⋮\)6
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)